November 28th, 2019

All about the IPCV-LAB's Visual Odometry Algorithm


The poster above in high resolution can be downloaded in the following link:


IAPR MVA-2017 poster Geovanni_Martinez Visual Odometry_IPCV-LAB.pdf


Published papers:

  1. G. Martinez, "Extending the Measurement Error Model of a Direct Visual Odometry Algorithm to Improve its Accuracy for Planetary Rover Navigation", accepted for publication in IEEE International Conference on Applied Science and Advanced Technology (IEEE iSACAT 2019), Queretaro, Mexico, November 27-29, 2019.
  2. G. Martinez, "Experimental results of testing a direct monocular visual odometry algorithm outdoors on flat terrain under severe global illumination changes for Planetary Exploration Rovers", Computación y Sistemas, an International Journal of Computing Science and Applications, Vol. 22, No. 4,  pp. 1581-1593, 2018.
  3. G. Martinez, "Improving the Robustness of a Direct Visual Odometry Algorithm for Planetary Rovers", IEEE International Conference on Electrical Engineering, Computing Science and Automatic Control (IEEE CCE-2018), Mexico, City, Mexico, September 5-7, 2018.
  4. G. Martinez, "Field tests on flat ground of an Intensity-difference Based Monocular Visual Odometry Algorithm for Planetary Rovers", 15th IAPR International Conference on Machive Vision Applications (IAPR MVA-2017), Nagoya, Japan, May 08-12, 2017.
  5. G. Martinez, “Intensity-Difference Based Monocular Visual Odometry for Planetary Rovers”, New Development in Robot Vision, Book Series: Cognitive Systems Monographs, Vol. 23, Springer, ISBN: 978-3-662-43858-9, pages 1181-198, 2014.
  6. G. Martinez, "Monocular Visual Odometry from Frame to Frame Intensity Differences for Planetary Exploration Mobile Robots", IEEE Worshop on Robot Vision (IEEE WoRV), Tampa Bay, Florida, USA, 16-17 January, 2013.