Maximum-Likelihood Motion Estimation of a Human Face Geovanni Martínez University of Costa Rica	Introduction (1) Challenge: Non-intrusive human face motion estimation from a single video cam-	Introduction (2) Shape model The human face is described by a rigid 3D mesh of triangles
Image Processing & Computer Vision Research Laboratory IP&CV-LAB http://ipcv-lab.eie.ucr.ac.cr gmartin@eie.ucr.ac.cr IEEE-ICME July 2003	Applications: Video compression. Human-machine interfaces. Approach: Motion estimation by maximizing the conditional probability of the frame to frame intensity differences at observation points.	Motion model The global 3D motion of a human face is de- scribed by 6 parame- ters B: one 3D transla- tion vector and 3 rotation angles. Other assumptions Static camera. Perspective projection. Diffuse illumination.
<image/>	<text><image/><image/><text><text><text></text></text></text></text>	Motion estimation algorithm (3)4) Read next image.5) Compute the intensity differences FD between the observation points and the current image.6) Compute the conditional probability $p(B/FD)$.7) Maximize the conditional probability: $p(FD/B) \ge p(FD/B) \forall B$.8) Move all vertices of the mesh and all observation points with the motion estimates B.9) Goto step 4).
<image/>	<image/>	 Conclusions 1) A non-intrusive human face motion estimation algorithm from a single video camera was developed. 2) The motion parameters of a human face are estimated by maximizing the conditional probability of the frame to frame intensity differences at observation points. 3) There are visible tracking errors particularly when the person opens or closes the eyes or mouth.