Cell Cluster Segmentation Based on Global and Local Thresholding for In-Situ Microscopy

E. Espinoza₍₁₎, G. Martínez₍₁₎, J.-G. Frerichs₍₂₎, and T. Scheper₍₂₎

(1)University of Costa Rica – Image Processing and Computer Vision Lab (2)University of Hannover – Institut für Technische Chemie

IEEE ISBI-2006

In-Situ Microscopy

On-line automatic cell density estimation (cell count) with no risk of culture contamination

 Capture a digital cell image *I_i*, *i:0...(N-1)*(M-1)*

2) Compute the local variance image V_i

- 3) Classify all the pixels of the variance image V_i into pixels of the cell clusters and pixels of the background by using the global Maximum-Likelihood threshold th_g
 - $V_i \le th_g$: background $V_i > th_g$: cell cluster

- Eliminate isolated white pixels by applying a 5x5 median filter
- 5) Eliminate black holes inside white regions and also those white regions whose image area is less than 0.05% of the total image area

cell cluster region (white) background (black)

6) Select for each segmented region rall the border pixels $I_g^{(r)}$, $g:0...G^{(r)}$

Choose for each 7) segmented region r only those border pixels $I_{q}^{(r)}$ (inliers), $q:1...Q^{(r)}, Q^{(r)} < G^{(r)},$ with an intensity value similar to the background intensity value by applying a **RANSAC** algorithm

inliers (white) outliers (black)

8) Estimate for each segmeted region r the local threshold $th_{l}^{(r)}$ as follows

9) Reclassify all the intensity pixels I_i inside of each segmented region r using the local threshold th^(r)

 $I_i \le th_i^{(r)}$: cell cluster $I_i > th_i^{(r)}$: background

cells (white) background (black)

- 10) Eliminate isolated white pixels by applying a 5x5 median filter
- 11) Eliminate black holes inside white regions and also those white regions whose image area is less than 0.05% of the total image area

Results

- Experiments performed on real intensity images of CHO (Chinese Hamster Ovary)cells
- Average processing time: **2.62 s**
- MSE used to measure segmentation accuracy against manually drawn segmentations

Results

Global thresholding

Global and local thresholding

Results

Global thresholding

Global and local thresholding

MSE of the segmentation algorithm based only on global thresholding (dotted line) MSE of the segmentation based on global and local thresholding (solid line)

Conclusions

- First all image pixels are classified into pixels of the background and pixels of the cell clusters using a global threshold
- Then the misclassifications are corrected by classifying again all the pixels inside of each segmented cell cluster using a local threshold
- Average processing time: **2.62 s**
- Segmentation accuracy improvement: **82.26%**