Facial Feature Extraction Based on the Smallest Univalue Segment Assimilating Nucleus (SUSAN) Algorithm

> Mauricio Hess Geovanni Martínez

Image Processing and Computer Vision Research Laboratory (IPCV-LAB)

> Escuela de Ingeniería Eléctrica Universidad de Costa Rica

> > PCS-2004

Overview

- Motivation
- Problem
- Approach
- Algorithm
- Results
- Summary

Motivation (1)

Model-based coding

Motivation (2)

- At the beginning of the image sequence, the model must be adapted to the real face:
 - Face segmentation
 - Facial feature extraction
 - i.e. eyes and mouth corners,
 - Chin and cheek borders
 - Face model adaptation

Motivation (3)

- Face segmentation
 - The face is segmented splitting the object silhouette into head and shoulders and then removing the upper third of the head
 - The silhouette is estimated by a change detection algorithm

Motivation (4)

 Artificial template matching for eyes and mouth corners extraction

Motivation (5)

• Deformable Template Matching for chin and cheek borders extraction

Problem

- Artificial template matching fails when applied to images different than those used to generate the artificial templates
- Parabolas are not flexible enough for description of chin and cheek borders

Approach

- First, all corners and borders are extracted using the Smallest Univalue Segment Assimilating Nucleus (SUSAN) algorithm
- Then, the facial features are detected from the extracted corners and borders by using knowledge based rules

Corner and border extraction

 Smallest Univalue Segment Assimilating Nucleus (SUSAN) algorithm

n=USAN area

if $n \approx \pi \cdot r^2 \cdot \frac{1}{2} \longrightarrow$ straight border

if $n \ll \pi \cdot r^2 \cdot \frac{1}{2} \longrightarrow corner$

Algorithm (1)

Extraction of the mouth corners and outer corners of the eyes

Algorithm (2)

Detection of the left mouth corner (example)

detection

Algorithm (3)

• Extraction of the nose corners

search region from extracted mouth corners and outer corners of the eyes

Algorithm (4)

• Extraction of the chin and cheek borders

Results (1)

• Data:

- 40 frames of test sequence Claire (CIF, 10 Hz)

- Average processing time: – 0.2 sec/frame
- Reliability:

 all facial features could be extracted in 85% of the frames

Results (2)

4th frame, *Claire*

14th frame, Claire

7th frame, *Claire*

17th frame, Claire

12th frame, *Claire*

29th frame, Claire

Results (3)

- Position error of the mouth corners and outer corners of the eyes:
 - -2.3 ± 0.9 pixels
- Position error of the nose corners: -3.7 ± 1.9 pixels
- Position error of the chin and cheek borders:
 1.1 ± 0.8 pixels

Summary

- First, all corners and borders are extracted using the SUSAN algorithm
- Second, the facial features are detected from the extracted corners and borders using knowledge-based rules
- All facial features were extracted in 85% of the frames