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ABSTRACT: For abject based coding of image se-
guences, the shapes of articulated 3D objects are esti-
mated applying three steps: shape-initialization, ob-
ject—articulation and shape-adaptation. In this
contribution, object—articulation isextended to consid-
er small objects and mutual occlusion. For object—ar-
ticulation, the rigidity constraint imposed by a rigid
component is exploited. According to this constraint,
the motion of any of the component’s particles can be
described by using the same motion parameters. Ob-
ject—articulation of small objects is now possible be-
cause more reliable information is used for evaluation
of therigidity constraint. For evaluation, besideslocal
3D motion, alsolocal 2D motion and a segmentation of
a displacement vector field into regions of homoge-
neous magnitude of the displacement vector are taken
into account. In case of occlusion, the shape of the
components in foreground and the shape of the oc-
cluded components are modelled separately. Exper-
imental results using the test sequence ” Geovanni”
show areduction of thetotal size of the so called model
failureareasfrom10.5%to 7.0% without | oss of subjec-
tive image quality. Only for these model failure areas,
color update must be performed.

1 INTRODUCTION

For coding of moving images at |ow datarates, object—
based analysis-synthesis coding (OBASC)[11] subdi-
videseachimage of asequenceinto moving objectsand
describes each object by three sets of parametersdefin-
ing its motion, shape and surface color. The nature of
the parameters depends on the applied source model
and they haveto be estimated automatically. Assuming
diffuseillumination, imageregionswheremotion com-
pensation fails because motion and shape parameters
could not be estimated successfully are called M odel
Failure areas (MF—areas). Color parameters are trans-
mitted for MF—areas only. Since the transmission of
color parametersis expensive in terms of datarate, the
total size of MF—areas should be kept as small as pos-
sible.

Ostermann[13] proposes an OBA SC scheme based
on asource model of "moving rigid 3D objects’. Ac-
cording to this source model, model objects are rigid
with 3D shapeand movinginthe 3D space. Themotion

is defined by a set of 6 parameters which describe the
tranglation (T, Ty, T,) and rotation angles (R, R, R,)
of the object in the 3D space. The 3D shapeis repre-
sented by amesh of triangleswhichisput up by vertices
denoted as control points. Color parameters denotethe
reflectance of the object surface and are taken by pro-
jection of areal image onto the surface of the mesh of
triangles.

Sincereal objects may be articulated, i.e. may con-
sist of flexibly connected rigid 3D object—components,
Martinez[ 7] proposes an OBA SC scheme based on the
source model of "moving articulated 3D objects’. In
computer graphics, object—components arealso called
links. Each object—component has its own set of mo-
tion, shape and color parameters. Since the shape of
each object—component isdefined by itscontrol points,
object—components are connected by those triangles
with control points belonging to different object—com-
ponents. Due to these connecting triangles, object—
components are flexibly connected. Connecting
trianglesmay enforcespatial constraintsonthelocation
of object—components. Spatial constraints between ob-
ject—components are modelled using jointg 1][8].

For shape estimation of articulated objects the fol-
lowing steps are applied in [7]: shape-initialization,
obj ect—articul ation and shape—adaptation. Shape-ini-
tialization carries out a change detection between the
firsttwoimagesof asequenceto distinguishtemporally
changed and unchanged regions. Then, for each
changed region one rigid 3D shape represented by a
mesh of triangles is generated assuming ellipsoidal
shape[13]. Since shape-initialization describes each
real articulated object by only onerigid 3D model ob-
ject, motion compensation will fail if object—compo-
nents move differently. For object—articulation, the
rigidity constraint imposed by a rigid object—compo-
nent is exploited. According to this constraint, the 3D
motion of each triangle, which covers the visible sur-
face of one unknown object—component, can be de-
scribed by using the same 3D motion parameters.
Therefore, neighboring triangles which exhibit similar
3D motion parameters during the image sequence are
clustered into object—components. For the estimation
of the 3D motion parameters of asingletrianglei, i.e.
Agpj = (Tx,iv Tyir Tair Ry Ry,ia Rzi)Ta a robust algo-
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rithm is applied which evaluates that triangle and its
neighborhood. Shape-adaptation isused to updatethe
shape of each object—component of an articulated ob-
ject during the image sequence.

Until now theshape estimation algorithmfor articu-
lated objects proposed in [ 7] has been successfully ap-
plied to typical " head and shoulders’ video sequences,
where object—components are large and no occlusions
occur. In case of small object—components consisting
of only afew picture el ements object—articul ation can
fail, because the probability of convergency to correct
motion parameters of the applied estimation algorithm
becomes low.

Inthiscontribution, thealgorithmfor object—articu-
lation proposed in [7] is extended to consider small
object—components and mutual occlusion. To consider
small object—components, besidesthe estimation of the
3D motion parameters for each visible triangle i, also
the 2D motion parameters Ax; = (T, Ty, R,)" and
the magnitude of the displacement vector

Ap; = (Dy;, D))" i.e |Ap| = /D% + D7, areesti-
mated. For clustering, additionally to the 3D motion
parametersof eachtriangleboththe 2D motion parame-
tersaswell asthe magnitude of the displacement vector
of each triangle are also taken into account. For 2D
motion estimation, the same robust agorithm used for
3D motion estimation is applied, but only the parame-
ters T,;, Ty, R,; are estimated and no neighborhood is
taken into account. The magnitude of the displacement
vector of eachtriangleistaken froma2D segmentation
of a pel—wise displacement vector field (DVF) into re-
gionsof uniform magnitude of the displacement vector.
For 2D segmentation, a maximum likelihood multi—
thresholding technique based on population mixture
models[6][9][14] is applied. In order to detect mutual
occlusion of object—components, a correlation of the
silhouettes of a found object—component and of the
complete object, asdefined in Chapter 3, is calculated.
If they are uncorrelated, the found object—component
occludes the object. In these cases, the shape of the
object—componentsin the foreground and the shape of
the occluded object—components are represented by
separated wireframes.

Theperformance of thedevel oped algorithmiseva
luated in the image analysis of an OBASC[13] scheme.
The performance is measured by the reduction of the
total size of MF—aresas.

The paper isorganized asfollows. In Chapter 2, the
algorithm for 2D segmentation of a displacement vec-
tor field into regions of homogeneous magnitude of the
displacement vector is presented. In Chapter 3, the ex-

tended algorithm for object—articulation is described.
In Chapter 4, experimental resultsare given. Final dis-
cussions are presented in Chapter 5.

2 SEGMENTATION OF A DISPLACEMENT
VECTOR FIELD INTO REGIONS OF UNI-
FORM MAGNITUDE OF THE DISPLACE-
MENT VECTOR

Multi-thresholdingisafundamental tool for segmenta-
tion of grey level imageswhen objects and background
pixels can be distinguished by their grey level values.
Among the global multi—thresholding methods which
determine thresholds from the grey level histogram of
an image, the maximum likelihood multi-thresholding
based on population mixture modelg[6] is found to be
best[4]. Here, thismulti—threshol ding techniqueisused
to segment a displacement vector field into regions of
uniform magnitude of the displacement vector.

Let s(x, y) betheluminance valueat point x, y of a
moving object—component in frame s, at time instant
k. It isassumed that the moving object—component does
not change its luminance from frame to frame. Then,
the motion of the object—component generates a dis-
placement vector d with components dx and dy. Using
polar form, this displacement vector can be written as
d = |d|4d, where the quantities [d] = ,/dx? + dy?
and X d are called the magnitude and phase of the dis-
placement vector, respectively. Inthispaper, afieldin
which each pel represents the displacement vector d of
the corresponding pdl intheimage s, is called a pel—
wise displacement vector field. In addition, afield in
which each pel represents the magnitude |d| of the cor-
responding displacement vector inthe DVF iscalled a
pel-wise displacement magnitude field (DMF). The
displacement vector field is estimated by hierarchical
block matching[2] with 1/8 pel measurement accuracy
usingthecurrentimage s, ; and thepreviousimage s,.

Let us now consider the displacement magnitude
field only inside the silhouette O, of arigid model ob-
ject generated by shape-initiaization (DMFy). The
magnitude value of each pel of the DMFis uniform
quantized in the interval [0, N-1] with N = 28 and
represented by |[df. The distribution of the discrete
magnitudevaluesinthe DMF can berepresentedinthe
form of ahistogram h(|d9), [d9 = O,..,N — 1, which
givesthe frequency of occurrence of each discrete val-
ue [d¥ in the DMF It is convenient to normalize this

histogramintheformof p(|dy) = h(|d¥)/N3,, where
N-1

NSy = Z h(|d?) is the total number of pels in the
[dS=0

DMF, and p(]d9) the probability density function of

|d¥| inthe case of Niy — .



Now, we suppose that we are classifying the N;,
pelsof the DMFginto N¢ classes C,, C,, Cs, ... .Che by
thresholdsat thevalues th,, th,, ths, ... ,thNC_l. Here C,
denotes pels with discrete magnitude valuesin the in-
terval [0, .., th,], C, denotes pelswith discrete magni-
tude values in the interva [th,+1, ..., th,] and Cre
denotes pels with discrete magnitude values in the in-
terva [tth_1+1, ..., N=1]. Assuming a Gaussian mix-
turedensity of size N for the probability density func-
tion of a discrete magnitude value [d¥, p(jd9) can be
written as follow

Ne ds| — 2
p(la) = Z%exp(— %) @

() = > cn - Loy 2

where u = (uy,u, ... tn), 0 =

Cc = (Cy, Cyy oony CN(:) arethemeans, standard deviations,

and weights of Gaussian components densities with
Nc

Ch=0,m=1,..,Ng z Cm = lrespectively, and

m=1

thel,, s sarethelikelihood of |d belonging to the mth
Gaussian component density in the mixture. When
Nc = 1, the Gaussian mixture density is reduced to a
simple Gaussian density.

(01,02, ..y O'NC) and

Assuming that the discrete magnitude values [d3],
n=1.,Ng in the DMF are statistically indepen-
dent, thejoint log-ikelihood of [d¥, 1, cand cisgiven
by [6][9][14]:

NBe Ne
| = z Z[Zm,wﬂ . (Iogcm + |09|m,|dg|)] 3
n=1m=1
where
1! Idf51| E C:I’TI
Zmiggl = 0, ds| & C., (4)

Fromthislog-ikelihood, we can obtainthe optimal
parameter sets u, o and c as described in [6]:
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whereth, = — land thy, = Nc. Thusthe maximum

log-ikelihood is given by
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Maximizing this log-ikelihood with respect to the
thresholds th,, th,, th,, ... ,tth,1 we obtain the opti-

mized thresholds tﬁl, tﬁz, tf13, ey thy 4. FOr maxi-
mization, the Downhill Simplex Method described in
[12] isused. Atthebeginning, thenumber of classes N
and consequently the initial position of the thresholds
are automatically calculated using the heuristic fast
multi—thresholding selection procedure described in
[10Q]. It assumes each desired class inthe DMFgcan be
represented by an approximately hill—shaped distribu-
tion in the histogram. The shape of the original histo-
gramissmoothed by recursively convoluting the histo-
gram with a Gaussian kernel so that the desired peaks
and valleys at varying levels of detail can be obtained.
The detected valleys in the smoothed histogram indi-
catethenumber of classes N andtheinitial position of
the thresholds.

Using the optimal thresholds tﬁl, tﬁz, tF13,

tFINC_ 1, the discrete magnitude values |d5| in the DMF

are classified into N classes. After classification, we
obtain N, regions of uniform magnitude of the dis-
placement vector, where N,o; = N, because different
regions may move with the same magnitude of thedis-
placement vector. Intheideal case, i.e. puretrandation-
a movement of the object—components, these regions
will represent the compl ete obj ect—components. How-
ever, due to the more complicated real object—compo-
nents motion, i.e. translation and rotation in the 3D
space, one object—component can be split into several
neighboring regions of homogeneous magnitude of the
displacement vector. For example, theright arm of the
articulated object " Geovanni” (seeFig. 1.aand 1.b). In
this case, dueto the arm’s rotation around an axis per-
pendicular to the image plane at the elbow’s position,



themagnitude of the displacement vector of apel onthe
arm depends on its proximity to the elbow. The nearer
the pixel, the smaller the magnitude of itsdisplacement
vector. Therefore, after classification, theright armwas
split into several neighboring regions whose displace-
ment magnitudes decrease depending on its position
with respect to the elbow.

Thus, in order to obtain the compl ete object—com-
ponent, the N,y regions found using the optimal
thresholds are then merged into larger regiong[3]. For
merging, theregions size and the rigidity constraint
imposed by arigid object—component are considered.
First, each small region is merged to its largest neigh-
boring region. Secondly, neighboring regions which
exhibit similar 2D motion parameters are also merged.
After merging, the boundaries of each resulted region
G, j: L..N;es With N;&s =< Ny, isimproved by local
analysis of image luminance and contours near its
boundaries. Finally, a displacement magnitude |D;| is
assigned to each region G;. |D;| represents the average
of the magnitude of the displacement vectors of the
DMFinside of G;:

;o
Pl =N > ©)
n=1

08I G;

where N; isthe number of pels of the region G;.

3 EXTENDED ALGORITHM FOR OBJECT-
ARTICULATION

The extended al gorithm for obj ect—articul ation applies
6 steps for each frame of the image sequence after
shape-initialization: by the first step, 3D motion es-
timation and compensation for the whole 3D model
object is carried out. By the second step, neighboring
triangles which exhibit similar 3D motion parameters
are clustered into patches. These patches are called
patchestype 1. By thethird step, neighboring triangles
with similar 2D motion parameters are clustered into
patches type 2. By the fourth step, neighboring
triangleswith similar displacement magnitudeareclus-
tered into patches type 3. The magnitude of the dis-
placement vector of each triangle is taken from a 2D
segmentation of a pel—wise displacement vector field
intoregions G,, G,, ..., Gy, of homogeneousdisplace-
ment magnitude |D4|, [D,), ..., |Dy,» respectively. For
2D segmentation, the maximum likelihood multi—
thresholding method based on population mixture
models as proposed in Chapter 2 is applied. For each
triangle, its projection into theimage plane of the cam-
eraisthen calculated. If this projection is inside of a

region G;, |D;| isassumed to be the triangle’sdisplace-
ment magnitude. Patches type 1, 2 and 3 may share
triangles. By thefifth step, clustering results obtained
by previousframesare updated considering the cluster-
ing results obtained by the analysis of the current
frame. Therefore, a patch—-membership—memory is at-
tached to the triangles of the model abject, i.e. the
triangle’s membership to a patch is stored with each
triangle. The patches type 1, 2 and 3 obtained by the
second, third and fourth step of the current frame, re-
spectively, are used either to define a new patch in the
patch—memory or to update patches stored already in
the patch—memory[7]. By the sixth step, as soon asa
patch in the patch—-memory isnot changed during more
than two successive updates, it isdefined as an object—
component, if it improves 3D motion compensation.

Let 0 beapatchinthe patch memory which hasjust
been defined asan object—component and L ;thelength
of its silhouette 0, see Fig. 2. Let L be the length of
the shared boundary between the complete model ob-
ject’'ssilhouette O,and 3, where L + LS = L,. The
correlation of the silhouettes dand O, is measured by
the following heuristic correlation factor:

L, - Lo o
Cf=(1— C )Z(l_L_a> (10)

The patch d is considered to occlude other compo-
nentsif C; < 0.2. Otherwise, no occlusion occurs, see
Fig. 2. In case of no occlusion, the patch ¢ is consid-
ered flexibly connected to the residua model object—
components, seethehead in Fig. 2.aand 3.b. I n case of
occlusion, an independent wireframe representing the
shape of the object—component isgenerated and placed
in front of the occluded object—components, see the
person’sright arm inthe Fig. 2.b and 3.b. Before wire-
frame generation, a more reliable object—component’s
silhouetteis computed by a 2D segmentation of a DVF
inside of 6{5]. For 2D segmentation, the same maxi-
mum likelihood multi—thresholding method based on
population mixture models proposed in section 2 is
used.

4 RESULTS

OBASC according to [13] and OBASC with the ex-
tended algorithm for shape estimation of articulated
objects (OBASC®") are applied to the test sequence
"Geovanni” (CIF-10Hz), see Fig. 1.a. This sequence
showsatypical articulated object, i.e. aperson. Mutual
occlusion occurs. For motion estimation of articulated
objects, thealgorithm proposed by Martinez[ 8] isused.
Experimental results show a decomposition into four




model object—components, i.e. head, right arm, leftarm
and body, see Fig. 3. Theimage area of model failures
obtained by OBASC and OBASC®*is10.5% and 7.0%,
respectively, measured with the same criterion for MF
detection.

5 CONCLUSION

For transmission of moving images at very low bit
rates, object—based analysis—synthesiscoding usingthe
source model of "moving articulated 3D objects’ is
investigated. For coding, the parameter setsdescribing
the object—components have to be estimated. 1n order
to estimate the shape of object—componentsthree steps
are applied: shape-initialization, object—articulation
and shape—adaptation. In this contribution, the algo-
rithm for object—arti culation hasbeen extended to con-
sider small objects and mutual occlusion. For object—
articulation the rigidity constraint imposed by a rigid
object—component is exploited. For evaluating the ri-
gidity constraint, additionally to the 3D motion param-
etersof eachtriangleboth, the 2D motion parametersas
well as the magnitude of the displacement vector of
each triangle are also taken into account. Due to the
reduced number of parametersto be estimated, the es-
timation of the 2D motion and the di splacement magni-
tude for each triangle is more reliable in the case of
small objects. If mutual occlusionisdetected, the shape
of the object—components in foreground and the shape
of the occluded object—components are represented by
separated wireframes. The wireframes of the object—
components in foreground are placed in front of the
occluded object—components. Applying the proposed
algorithm to the real test sequence " Geovanni” shows
that object—articulation of small object—componentsis
possi bleal so by mutual occlusion of the object—compo-
nents. For the test sequence " Geovanni” the average
size of the model failuresareas decreases from 10.5%
to 7.0% of theimage area. It can be expected that this
reduction of thesize of model failureswill significantly
reduce the bit—rate necessary for coding thisimage se-
guence.
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@ (b)

Fig. 1 (a) Frame5 of the image sequence ” Geovanni”, CIF-10Hz. (b) Regions found
after classification of the discrete magnitude values of the DMFs ,

Fig. 2 Lengths evaluated for occlusion detection. §, isthe silhouette of apatch ¢
in the patch—memory considered as amodel object—component. O represents the
silhouette of the complete model object. @) Since C, = 0.75 i.e. @ < L9 oc-
clusion is not asummed (see Eqg. 10). b) Since C, = 0.18 i.e. |§ > L9 occlusion
is assumed (see Eq. 10).

(b) (©

Fig. 3 Wireframe of the model object of the test sequence ” Geovanni” after (a) 3,
(b) 6 and (c) 8 frames. The object—components are represented with different grey

levels.



