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Abstract

In this paper, we present a non-intrusive method for human mo-
tion estimation from a monocular video camera for the teleoperation
of ROBONAUT (ROBOtic astroNAUT). ROBONAUT is an anthro-
pomorphic robot developed at NASA - JSC, which is capable of dex-
trous, human- like maneuvers to handle common extravehicular ac-
tivity tools. The human operator is represented using an articulated
three-dimensional model consisting of rigid links connected by spher-
ical joints. The shape of a link is described by a triangular mesh and
its motion by six parameters: one three-dimensional translation vec-
tor and three rotation angles. The motion parameters of the links are
estimated by maximizing the conditional probability of the frame-to-
frame intensity differences at observation points. The algorithm was
applied to synthetic and real test sequences of a moving arm with very
encouraging results. Specifically, the mean error for the derived wrist
position (using the estimated motion parameters) was 0.6+1.0 mm
for the synthetic image sequences and 0.574+0.31 cm for the real test
sequences. The motion estimates were used to remotely command a
robonaut simulation developed at NASA - JSC.

1 Introduction

While the microgravity environment of space provides numerous opportu-
nities it also poses challenges that must be overcome. In particular, space
systems operations and maintenance for the Human Exploration and Devel-
opment of Space will demand a heavy extravehicular activity (EVA) workload
from a small number of crew members. For example, close to 900 EVA hours
will be required to assemble the International Space Station with an addi-
tional 200 hours per year for maintenance requirements. Hence, robotic de-
vices remotely working with supervised or teleoperated control will be needed
to alleviate the astronaut work load as much as possible. It is expected that
by the end of the next decade the majority of the EVA required operations
on orbit and on planetary missions will be conducted with the assistance of
telerobotic devices. Telerobotic technology seeks to merge robotics and tele-
operation to develop robots with remote mobility and manipulation. In such
a system, the human operator is physically removed from the task, sends
commands to the robot over a telecommunication system, and receives in-
formation about the status of the task and its environment using sensors.



Hence, telerobotics requires a strong interaction between the human opera-
tor and the controlled robot with the aid of vision, tactile and force feedback
sensors [21].

One such system is the ROBONAUT (ROBOtic astroNAUT) which is
an anthropomorphic robot with two arms, two hands, a head, a torso and a
stabilizing leg, that is currently being developed at NASA - Johnson Space
Center (NASA - JSC) to provide an astronaut substitute for EVA opera-
tions (Fig. 1). It includes two 7 degree-of-freedom (DOF) arms, two 12 DOF
five-finger robot hands, a 6+ DOF leg and a head with a 4 DOF stereo
camera. The robot arms are capable of dextrous, human-like maneuvers to
handle common EVA tools. The ROBONAUT will be teleoperated by an
intravehicular crew using sensors, cameras and virtual reality tools (head
mounted display, virtual reality gloves, or force-reflective arm and hand mas-
ters). One intuitive way to teleoperate the ROBONAUT is to estimate the
three-dimensional motion of the operator’s body parts (e.g., head, arms,
torso, and legs) and then use the estimated motion to control the ROBO-
NAUT. In such a system, the robot duplicates the movements made by an
operator. For example, as the operator extends out an arm, so does the
ROBONAUT. And if the operator starts twisting a screwdriver, the ROBO-
NAUT should duplicate the action. Currently, the off-the-shelf systems for
human motion estimation are very intrusive and encumbering because they
attach devices such as sensors or markers to the operator. Our goal is to de-
velop a non-intrusive system for human motion estimation from a monocular
image sequence for the teleoperation of ROBONAUT [21].

The existing literature on human motion estimation from a monocular im-
age sequence can be roughly divided into two groups (see [1, 11, 25, 26, 36|
for comprehensive reviews). The first one estimates the motion using image
features (e.g, edge points) [8, 10, 12, 13, 16, 17, 18, 20, 24, 35, 37, 38, 40,
41, 42, 43, 44]. The second group estimates the motion from frame to frame
intensity differences at observation points [7, 19, 27, 28, 29, 39, 45, 47]. Those
motion parameters, which minimize the frame to frame intensity differences
at observation points, are considered to be the estimates of the motion param-
eters. In [9, 46] both image features and frame to frame intensity differences
are taken into account for motion estimation. In this report, the motion is
estimated by maximizing the conditional probability of the frame to frame
intensity difference at observation points [32, 33, 34].

For Maximum-Likelihood motion estimation the human body is repre-
sented by a three-dimensional model consisting of rigid links connected by



Figure 1: ROBONAUT (Photo courtesy of NASA - JSC)

spherical joints. The three-dimensional (3D) shape of a link is described by
a triangular mesh. The 3D motion of a link is described by six parameters:
one three-dimensional translation vector and three rotation angles. The tex-
ture of a link is defined by projecting a real image into its triangular mesh.
The motion parameters of a link are estimated by maximizing the condi-
tional probability of the frame to frame intensity differences at observation
points. The conditional probability is a function of the motion parameters,
the frame-to-frame intensity differences, and the covariance matrix of the in-
tensity error at the observation points. The intensity error is the result of the
camera noise, the shape estimation error, and the position error due to the
motion estimation errors occurred by the motion analysis of previous frames.
The covariance matrix of the intensity error is computed by modeling the
position and the shape estimation error of the link and the camera noise by
zero-mean stationary Gaussian stochastic processes. In addition, instead of
simultaneously estimating all the motion parameters of the links, a decompo-
sition approach is used. Thus, first the translation and rotation parameters
of the root link are estimated. Then only the rotation angles for the rest
of the links are estimated beginning from the root link one after the other.



In order to improve the accuracy and reliability of the motion estimates, for
each link the Maximum-Likelihood estimator is applied iteratively.

Until now, the Maximum-Likelihood motion estimation has been only
applied to estimate the motion parameters of the head and shoulders of a
subject. In this work, we develop a model of the right arm of a human and
apply the Maximum-Likelihood motion estimation. Then, we employ the
motion estimates to remotely command the right arm of a virtual ROBO-
NAUT using a simulation developed at NASA - Johnson Space Center [15].
Finally, we perform a number of experiments on synthetic and real data to
assess the accuracy, limitations and advantages of the approach.

The remainder of this paper is structured as follows. In Section 2, the
Maximum-Likelihood motion estimation algorithm is described. In Section
3, the process for commanding the right arm of the virtual ROBONAUT is
presented. In Section 4, experimental results for synthetic and real image
sequences are detailed. Finally, in Section 5, we offer our conclusions.

2 Maximum-Likelihood Motion Estimation

In this section, we will describe the Maximum-Likelihood motion estimation
algorithm of articulated objects proposed in [32, 34], that we use for estimat-
ing the motion of the right arm of a human body from a monocular image
sequence. For each link of a human body, the algorithm estimates the pa-
rameters, which describe its 3D motion in the world coordinate system from
time #; to time t;1. For estimation of the motion parameters of a link, the
frame to frame intensity differences of two consecutive intensity frames Iy
and I, of an image sequence, are evaluated. Those motion parameters,
which maximize the conditional probability of the frame to frame intensity
differences at observation points, are considered to be the motion estimates of
the link. The conditional probability is a function of the motion parameters,
the frame to frame intensity differences, and the covariance matrix of the
intensity error at the observation points. To compute this conditional proba-
bility, a mathematical relationship between the 3D motion parameters of the
link and the frame to frame intensity differences at the observation points is
used. This relationship is based on a number of assumptions about the world
and how it is projected into the image plane of a camera as described in [32]
and reviewed in section 2.1. Section 2.2 defines what is an observation point
and explains how to compute the corresponding frame to frame intensity dif-



ference. Sections 2.3 and 2.4 describe how to compute the covariance matrix
of the intensity errors and the conditional probability of the frame to frame
intensity differences at observation points, respectively. Section 2.5 explains
how to maximize the conditional probability taking the derivative respect to
the motion parameters. Finally, section 2.6 presents a stepwise description
of the Maximum-Likelihood motion estimation algorithm.

2.1 World model

The world model summarizes the assumptions about how the world is con-
structed and how it is projected into the image plane of a camera. It allows
us to establish the connection between the frame to frame intensity differ-
ences and the moving links [32]. It consists of an illumination model, an
object model, and a camera model. The illumination model assumes that
the illumination is diffuse as well as spatial and time invariant.

2.1.1 Object model

The object model is composed of a shape model, a material model, and a
motion model.

The shape model describes the human body as M rigid links L,,, m =
0,.., M —1, connected to each other by M —1 spherical joints J;, j =1, .., M —
1. A spherical joint .J; is represented by a point between the two connected
links and its position is described by the position vector J;. The shape of
each link is described by a triangular mesh (Fig. 2). Each link has its local
coordinate system and the position of the vertices of its triangular mesh
are expressed w.r.t. this coordinate system. The two links connected by
an arbitrary joint J; are named reference link L.+ and relative link L~
of the joint .J;. The reference link L)+ (one of the two links connected
by the joint .J;) is the link that is closer to the root link L, in the tree
structure. The functions ¢(j)* and ¢(j)~ give the identification number m of
the corresponding reference link and relative link of the joint .J;, respectively.
For example, the value of these functions for the spherical joint J; in Fig. 2
is ¢(1)" = 0 and ¢(1)~ = 1. In addition, the origin of the coordinate system
of the relative link L.~ is placed at the joint position J; and the origin
of the coordinate system of the root link is placed at an arbitrary point Jg
inside its mesh. Finally, the links along a branch of the tree structure are
numbered increasingly beginning from the root link one after the other and



each joint gets the number of the corresponding relative link. Due to this
regular numbering the following convenient identities are true: c¢(j)~ = 7,
and Lc(j)— = Lj.

The material model assumes that the objects have a diffuse reflecting
surface and that their texture is the result of a linear combination of the
intensity and chrominance values being reflecting from the object surface.

The motion model assumes that from time ¢, to time ¢, the root link L
of an articulated object can rotate and translate freely in the world coordinate
system and that the relative link L; of each joint J; can only rotate freely
around the joint position J;. The motion of the root link Ly from time #; to
time ¢, is described first by a rotation and then by a translation of its local
coordinate system in the world coordinate system (Fig. 3). The translation
is described by the 3D translation vector ATy = (AT), AT, AT?). The
rotation is described by the rotation matrix ARy defined by the three rotation
angles Aw), Awy, and Aw). Let A and A’ the position of an arbitrary point
on the surface of the root link Ly before and after the motion (i.e., at times
tr and tj1, respectively). The new position A’ is computed as follows:

A,:ARo'(A—J0)+J0+ATO, (1)

where J, is the origin of the coordinate system of the root link Ly at time
k. In contrast, the motion of an arbitrary link L; from discrete time ¢ to
t41 1s described first by a translation AT, and then by a rotation AR; of its
local coordinate system w.r.t. the world coordinate system (Fig. 3). Due to
the constraints imposed by the joint .J; on the motion of the corresponding
relative link L;, the translation vector AT, depends entirely on the rotation
AR,(j)+ and translation vector AT+ of the corresponding reference link
L)+ and is computed as follows:

AT; = ARyt - (Jj = Je(iyr) + ey + AT+ — I (2)

According to Eq. 2 the motion of the reference link L.+ enforces a transla-
tion on the corresponding relative link L;. Let A and A” be the position of
an arbitrary point on the surface of a relative link L; before the motion (i.e.,
at time 1), and after the translation enforced by the corresponding reference
link L)+, respectively. The position A7 is computed as follows:

AT = A +AT; . (3)



Figure 2: Graphical model of a human arm with two links L, and L; con-
nected by one spherical joint J;. The shape of each link is described by a
triangular mesh. The links Ly and L; represent the reference and the relative
link of the joint .J;, respectively. In this example, the reference link is also
the root link of the articulated object. The origin of the coordinate system
of the relative link L; is placed at the joint position J; and the origin of the
coordinate system of the root link L is placed at an arbitrary position J,
inside its mesh.



Figure 3: Example of the motion of the human arm model. The motion of the
root link Ly is described first by a rotation ARy and then by a translation
ATy of its local coordinate system in the world coordinate system. The
motion of the relative link L; is described first by a translation AT; and
then by a rotation AR, of its local coordinate system in the world coordinate
system. Due to the constraints imposed by the joint JJ; on the motion of the
relative link L; its translation vector AT depends entirely on the motion of
the corresponding reference link L, according to Eq. 2.



The joint position also moves from J; to J}- according to the latter equation.
Let A’ the position of an arbitrary point on the surface of a relative link L;
after the motion, i.e., at time #;,4. A’ is computed from AR, as follows:

A'=AR; (A" -J))+17] . (4)
According to the latter equation the following identity is true: Jj, =J;7.

2.1.2 Camera model

The camera model assumes that an image is generated by perspective pro-
jection of the world into the image plane of a camera (Fig. 4). Thus, an
arbitrary point with world coordinates A = (A,, A,, A,)" is projected into
the image coordinates (a,(A),a,(A))" = (f - i_j’f : i—Z)T, where f is the
focal length of the camera. The image plane is assumed to be located on the
plane described by z = — f (parallel to the xy-plane of the world coordinate
system) and the focal point is placed at the origin of the world coordinate
system.

The Taylor series expansion of a,(A) and a,(A) around an arbitrary
point A are given by:

da, da, da,
as(A + AA) = ay(A) + az AA, + a% AA, + a% AA, +0,
T A Y1A Z 1A
B da, da, da,
(A +AA) = ay(A)+ | Ady+ | Ay A0

where ¢, and 6, represents higher order terms. Considering the linear terms
only, the following relationship between a small displacement AA and its
corresponding projection Aa into the image plane is given:

ar(A+AA) =a,(A)+ | ¥ ;14 |-AA,
0o £ L
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Figure 4: Image coordinates a of the perspective projection of an arbitrary
point A onto the image plane of a camera.
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2.2 Observation points

To estimate the motion parameters of an arbitrary link the frame to frame
intensity differences at observation points are evaluated. According to [32, 34]
an observation point A lies on the surface of the mesh of the link at position
A = (A, A, A,)" and carries the intensity value I at this position. The
position of the projection of this point A into the image plane is represented
by a = (az,a,)". Let g = (gz, g,) " be the observable linear intensity gradient
at image position a. In order to reduce the influence of the camera noise and
to increase the accuracy of the estimates only those observation points with
high linear intensity gradient (|g| > 0,) are taken into account for motion
estimation. Assuming that the shape, position and orientation of the model
link correspond with those of the real link at time ¢, the frame to frame
intensity difference fd at the observation point a is approximated as follows:

fd(a) = Ii1(a) — Ix(a) = I41(a) — T,
where I;(a) and Iji(a) represent the intensity value of the images I;, and
I}, at the position a, respectively. Since in general a lies outside of the image
raster, the intensity value Iy, (a) is computed by bilinear interpolation of the
intensity values of the nearest four pixels of the intensity image Ij;. Then,
the frame to frame intensity difference at N observation points is represented
as follows:

FD = (fd(@™ V), fd@™2),..., fd@”))" .

Finally, the mean squared frame to frame intensity difference at the ob-
servation points is given by:

1N—l
_ L (n))2
msd = N;fd(a )%

2.3 Covariance matrix of the intensity error

In [32, 34] the intensity error at an observation point is assumed to be the
result of the camera noise, the shape estimation error, and the position error
due to the motion estimation errors occurred by the motion analysis of pre-
vious frames. The intensity error at an observation point affects the motion
estimation of an arbitrary link because it perturbs the frame to frame in-
tensity differences which are evaluated for motion estimation. The result of

12



this perturbation is a decrease of the accuracy and reliability of the motion
estimates. In this section, we present a stochastic model of the intensity error
and a method to compute the covariance matrix of the intensity error at the
observation points [32, 34]. In section 2.5, this covariance matrix is taken
into account for motion estimation to allow reliable Maximum-Likelihood
estimates despite the intensity errors.

The stochastic model for the intensity error is obtained by mapping a
stochastic model of the shape estimation and the position errors (due to
previous motion estimation errors) into an intensity error on the image plane.
Therefore, both the shape and position errors are described by the position
error AA, which is the difference between the position of the observation
point A* on the surface of a real link and the position A of the corresponding
observation point on the surface of the mesh of the link (Fig. 5):

AA=A"—-A.

AA = (AA;, AA,, AA,) is modeled as stationary zero-mean Gaussian stochas-
tic process with variances o2, o7 and o2. Their covariance matrix is given
by:

o2 0
0 0
0 2

0,

E[AA -AAT| =Cpp =

o, o

The position error AA is mapped into the corresponding position error
Aa = [Aa;,Aq,]" = a* — a on the image plane using Eq. 5. Aa, and
Aa, are modeled as stationary zero-mean Gaussian stochastic processes with
covariance matrix:

Caa=F[Aa-Aa"| =K -Caa-K',

where
o2f% | o2f%A2 olf2Az A,
Can — AZ AT AT
AA T o2 2 A Ay 0p? | oA
AT AZ Al

Finally, the position error Aa is mapped into the corresponding intensity
error on the image plane Alx, = I(a*) — I(a). Therefore, the intensity
signal is approximated using a Taylor series around the position a on the
image plane as follows: Alx, = g' - Aa, where the terms of higher order

13
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Figure 5: Mapping of a position error AA in the world coordinate system
into a position error Aa on the image coordinate system. A* is the position
of an observation point on the surface of the link and A is the corresponding
position on the surface of the link’s model.
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were neglected. This equation describes the changes of the intensity signal
I;, from the position a to the position a* on the image plane. The intensity
error Ala, is modeled by a stationary zero-mean Gaussian stochastic process
and its variance is computed as follows:

O—QAIAa:E[A[Aa'AIZa] = g'CAa'gT:g'K'CAA-KT-gT

0_2

2
= A_ZQ ' ((gxax + gyay)” + % (9502 + g;%?)) :
z z

In addition to AA, the camera noise also generates an intensity error
Al,,ise at position a on the image plane. This intensity error is modeled by
a stationary zero-mean Gaussian stochastic process with variance o%; .
Aln, and Al are assumed to be statistically independent. The total
intensity error Al at image position a is assumed to be the sum of both
intensity errors with the following variance: 03; = 0a;, + 03X . .
The joint probability density of the intensity error at N observation points

with image coordinates a®™, n =0, .., N — 1, is computed as follows:
(V) = e HVTUTY), (

(2m)™ U]

where V = [AT("D A2 AI(O)]T is the vector with the N intensity
errors, and |U]| is the determinant of the covariance matrix U of the inten-
sity error at the N observation points. Considering the intensity errors as
statistically independent this covariance matrix is expressed as follows:

o2,y 0 0 0
0 0%, 2 0 0
U=EV-V']= 0 0 Oxrs 0 (7)
0 0 0 0 02,0

2.4 Conditional probability of the intensity differences

The motion parameters B = (AT, AT, AT,, Aw,, Awy,sz)T of an arbi-
trary link are estimated by maximizing the conditional probability p(FD|B)
of the frame to frame intensity differences FD at N observation points.
In this section, we reviewed how the conditional probability p(FD|B) can
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be computed from a linear model of the intensity signal at the observation
points, the model world and the covariance matrix of the intensity errors at
the observation points [32, 34].

Let’s consider an arbitrary observation point A on the link surface and
assume that from the time ¢; to the time ¢, this observation point moves
from A to A’. The corresponding projections into the image plane are a and
a’, respectively. Expanding the intensity signal I at image position a by a
Taylor series and neglecting the nonlinear terms, the following relationship
between the unknown position A’ and the frame to frame intensity difference
is obtained:

fd(a) = Ir+i(a) — Iy(a) = —g - (a —a) .
Replacing a and a’' with their corresponding coordinates at the world
coordinate system the following equation results:

, T
' A
fd(a)z—f-g-@—ﬁ—y—ﬂ) , (s)

where the known position A = (4,, 4,, 4,)7 is related with the unknown
position A" = (A}, A}, A})T according to Eq. 1 as follows: A’ = AR - (A —
J) +J + AT. Substituting A’ in Eq. 8, a highly nonlinear equation that
relates the unknown motion parameters B and the frame to frame intensity
difference fd(a) is obtained. This nonlinear equation is linearized in three
steps. First, the rotation angles Aw,, Aw, , Aw, are assumed to be small
and thus cosw = 1 and sinw ~ w. Second, Eq. 8 is expanded using a Taylor
series expansion. Finally, by neglecting the nonlinear terms, the following
linear equation that relates the unknown motion parameters and the frame
to frame intensity difference is obtained:

fd(a) = _fAfm CAT, — fAfy ar,+ L (A"“gzj L) A1 4 Q, (9)
o = Lol 1)+ (4= gy + Ay (A= 10]
flAygy (A — Jo) + Axgxglx — o) + Auge (As — )] Aw, +

f 19z (Ay — in+ gy (Az — ZJx)] - Aw, . (10)
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When only the rotation parameters of the link need to be estimated, then
the equation fd(a) = @ is used instead of Eq. 9. Both equations can be
written as follows:

fd(a)=o" -B+ AT, (11)

where the term AT represents the intensity error caused by the camera noise,
the shape estimation error, and the position error due to the motion estima-
tion errors occurred by the motion analysis of previous frames, and

r_ [9 17
A,
[y
A.
[ (Azgat+Aygy)
A2
0= | flAega(Ay=Ii)t Aygy(Ay=ty) t Asgy(Aem 2] : (12)
AZ
_f'[Aygy(Aac_Jw)+Azgz(124z—Jz)+Az9z(Az_Jz)]
a7
f'[gz(Ay_Jyf)l"‘gy(Az_Jw)}

When the equation fd(a) = @ is used, o is written as follows:

[{Arga (Ay=Jy)+Aygy (Ay=Jy)+As gy (A= . ) T
AZ
o= _f'[Aygy(Az_Jw)‘i‘Aacgngf;z—Jz)"‘Azgz(Az_Jz)] . (13)
F192(Ay=Jy) +9y (As—Jx)]

z

Evaluating Eq. 11 at N observation points the following system of linear

equations is obtained:
FD=0O-B+V. (14)

Substituting V.= FD — O - B in Eq. 6 the conditional probability of the
frame to frame intensity differences at the N observation points is written as
follows:

p(FD|B) = ——— - }(@p-0mTu-lem-0B) (1)

(2m)N U]
2.5 Maximizing the conditional probability

The motion parameters B of an arbitrary link are estimated by maximizing
the conditional probability p(FD|B) of the frame to frame intensity differ-
ences FD at N observation points:

17



p(FD|B) > p(FD|B) VB, (16)

where B = (E, Ki\’y, AT,, Aw,, @, A/\wz)T are the estimated motion pa-
rameters. To simplify the maximization the former equation can be written
as follows [32, 34]:

0ln p(FD|B) J((FD - O - B)TU*I(FD —0-B))
a—B|B:ﬁ = OB |B:B 0.

Thus, the Maximum-Likelihood motion estimates B are given by:
B=(0"U'0)'OTU'FD. (17)

2.6 Algorithm

In this section, we present a step-wise description of the Maximum-Likelihood
motion estimation for the human arm. In summary, in the first step the
shape, position and orientation of the model is initialized and points on the
surface of the model’s links are selected as observation points for motion
estimation. Second, from each pair of consecutive intensity frames I, and
Ii+1 the translation vector ATy = (AT}, AT}, AT?)" and the rotation angles
Aw), Awy, and Aw] of the root link Ly are estimated. Third, the rotation
angles Aw], Aw}, and Aw] of the rest of the links L;, j = 1,.., M — 1,
are estimated beginning from the root link Ly one after the other. First,
we describe how model is adapted at the beginning of the image sequence
and how the observation points are selected for motion estimation. Then,
we present the algorithm for Maximum-Likelihood motion estimation of the
root link. Finally, we describe the algorithm for Maximum-Likelihood motion
estimation of the rest of the links.

Initialization: To initialize the shape, position and orientation of the model
we have developed a semi-automatic algorithm whose inputs are a predefined
three-dimensional triangular mesh of the human arm, the anthropometric di-
mensions of the links, and the image position of the joints at time ¢, (Fig. 6).
Alternative methods to initialize models from a single video camera are de-
scribed in [2, 3, 4, 5, 30, 31, 32] and from multiple cameras in [22, 23]. First,
the links of the model are scaled according to the real anthropometric dimen-
sions and then their position and orientation is computed from the known
image joint positions at time ¢, (assuming that at time ¢, all the links are
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Figure 6: Shape and pose adaptation of an arm model of a subject to the
first image of an image sequence.

parallel to the image plane of the camera). Finally, the texture of the artic-
ulated model object is obtained by projecting the intensity and chrominance
values of the first image of the image sequence to the surface of the model.

Next, points on the surface of the links are selected as observation points
(Fig. 7). First the gradient images g, and g, are computed by convolving
the first intensity image [, with the Sobel operator. Then, the vertices of
the visible triangles of the links are projected into the camera plane. An
image point a inside the image area of a projected triangle will be selected
as an observation point if the linear intensity gradient at position a satisfies
lg(a)| > d;. The corresponding 3D position vector A is set to the intersection
of the observation point’s line of sight and the plane containing the vertices
of the triangle in 3D. Finally, the intensity value I and the linear intensity
gradient of the observation point are set to Iy(a) and (g.(a), g,(a)) ", respec-
tively. Since the illumination model assumes that the illumination is diffuse
as well as spatial and time invariant, the intensity value I and the linear in-
tensity gradient of each observation point remain constant during the image
sequence.
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Figure 7: Selected observation points for the upper and lower arm of a person.
Only surface points with hight linear intensity gradient were selected for
motion estimation

Motion estimation of the root: For the Maximum-Likelihood estimation
of the parameters By = (ATY, AT, AT, Aw), Aw)), Aw?) " of the root link
Ly only frame to frame intensity difference at observation points of the root
link Ly are evaluated. In order to improve the reliability and accuracy of
the estimates the algorithm is applied iteratively [34, 32]. The resulting
estimates Z-]/?\)0 from each iteration i are used to update the motion estimates
By found by previous iterations. After each iteration i the root link and its
observation points are moved using the estimates ‘By. Due to the motion
compensation, the frame to frame intensity differences at the observation
points decreases. The iteration ends when after two consecutive iterations
the mean square frame to frame intensity difference at the observation does
not decrease significantly (6o = 107°). In each iteration ¢ the following steps
are carried out:

1. Compute the covariance matrix ‘U of the intensity error using Eq. 7.
2. Evaluate Eq. 9 at each observation point.

3. Compute the intensity differences ‘FD, and system matrix ‘O accord-
ing to Eq. 14.

4. Estimate the motion estimates i]§0 using Eq. 17.
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5. Move the vertices of the mesh of the root linkALo and its observation
points according to Eq. 1 using the estimates ‘B.

Compute the mean squared intensity difference ‘msd.
Update the rotation matrix: ARy + ‘AR, - ARy

Update the translation vector: ATy < AT, + AT,

R

If ['msd — " "Lmsd| > §, goto step 1.

Motion estimation of the rest of the links: After the estimation of
the motion parameters By of the root link Ly, the rotation angles Aw/,
Aw], and Aw! of the rest of the links Lj, j = 1,..., M — 1, are estimated
starting from the root link Ly one after the other. The motion parameters
B, = (Awl, Aw), Awl)T of link L; are estimated using only the frame to
frame intensity differences at observation points of that link. Before the
estimation of the rotation angles B; the following steps are carried out:

1. Estimate the translation vector AT; using Eq. 2.

2. Translate the vertices of the mesh of the link L;, its observation points,
and the joint J; according to Eq. 3.

Then, the rotation angles B, are estimated by applying an iterative
Maximum-Likelihood motion estimation algorithm. In each iteration ¢ the
following steps are carried out:

1. Compute the covariance matrix ‘U, of the intensity error using Eq. 7.
2. Evaluate fd(a) = Q (Eq. 10) at each observation point.

3. Compute the intensity differences ‘FD; and system matrix ‘O; accord-
ing to Eq. 14.

4. Estimate the rotation angles iﬁj using Eq. 17.

5. Rotate the vertices of the mesh of the link L; and its observation points
according to Eq. 4 using the rotation angles ‘B;.

6. Compute the mean squared intensity difference ‘msd.
7. Update the rotation matrix: Zf\{j — igf\{j : Zf\{j

8. If ['msd — “"'msd| > &5 goto step 1.
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3 Commanding the ROBONAUT

In this section, we present our procedure to remotely command the right
arm of the ROBONAUT. Our goal is for the ROBONAUT to imitate the
movements of the operator.

Instead of using the real ROBONAUT, we use a ROBONAUT simula-
tion developed at NASA - JSC (Fig. 8) [15]. The ROBONAUT simulation
matches the appearance and kinematics of the real ROBONAUT, and it’s
state is controlled from other processes just like the real ROBONAUT. The
control communication is done through a ROBONAUT API developed at
NASA - JSC [6]. The ROBONAUT API gives us the ability to see ROBO-
NAUT’s sensor data and to command ROBONAUT. The only difference in
the interface between ROBONAUT and its simulation is that some sensor
data coming from the simulation is not valid. As its underlying communi-
cations package, the ROBONAUT API uses the commercial product Real
Time Innovations, Inc. (RTI) Network Data Delivery Service (NDDS). The
graphics of the ROBONAUT simulation are created by the Enigma Core
libraries available from NASA - JSC Interactive Graphics, Operations, and
Analysis Laboratory (IGOAL)[14]. From this point onward, ROBONAUT
and its simulation will be treated the same.

The variables for the ROBONAUT’s right arm that are available through
the ROBONAUT API are the position and orientation of the ROBONAUT’s
right palm expressed in terms of a coordinate system located on the ROBO-
NAUT’s chest, the joint angles, and the palm, and joint position limits. The
root joint for the inverse kinematics computations is the ROBONAUT’s right
shoulder position. The palm’s end effector is located on the back of the right
hand, 1.5 inches forward from the wrist and 0.5 inches towards the back of
the hand. The only currently supported method of commanding the ROBO-
NAUT’s right arm is sending a message through the ROBONAUT API with
a new desired position and orientation for the ROBONAUT’s right palm.
The arrival of the message on the ROBONAUT site triggers the ROBO-
NAUT’s control system, which acts rotating and moving the ROBONAUT’s
right palm to the new desired position and orientation. The new wrist and
elbow positions are computed by using inverse kinematics.

For the teleoperation of the ROBONAUT’s right arm, we apply the fol-
lowing 5 steps to each image I of the image sequence:

1. Estimate the motion parameters of the operator’s right arm from time
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(b)

Figure 8: (a) Coronal, and (b) sagittal view of the virtual ROBONAUT from
the simulation developed at NASA - JSC.
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4

. Compute the new desired ROBONAUT’s right palm position J!

tr_1 to tx. For motion estimation apply the Maximum-Likelihood al-
gorithm described in Section 2. Let ATy, ARy be the estimated trans-
lation vector and rotation matrix of the operator’s right upper arm,

respectively, and let KITI be the estimated rotation matrix of the op-
erator’s right lower arm.

. Compute the operator’s right palm position J/, at time #;:

J,=AR, - (Jo—J) + 3+ ARy - (J; — Jo) + Jo+ AT, — J;

where the palm is assumed to be a rigid extension of the lower arm,
and Jy, J;, Jo are the positions of the operator’s right shoulder, elbow
and palm at time ¢,_q, respectively.

. Compute the translation vector of the operator’s right palm from time

tk—l to tki

AJQZJIQ—JQ

. Read the current ROBONAUT’s right palm position J, ., through the

ROBONAUT APL

robot*

J;obot = Jrobot + AT, .

. Send a message through the ROBONAUT API with the new desired

ROBONAUT’s right palm position J’

robot*

Experimental Results

We have implemented the Maximum-Likelihood motion estimation algorithm
described under Windows 2000, and have performed a number of experiments
on synthetic and real image sequences to assess its accuracy, limitations, and
advantages for estimating the motion of the right arm of a person. The
real image sequences were obtained using a Pulnix TMC-9700 1-2/3”CCD
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Progressive Scan Color Video Camera with a 2/3” 9 mm lens and a 640x480
RGB video output at a frame rate of 30 Hz. The video signal was acquired
using a Matrox Meteor-I11/Multi-Channel frame grabber. All the experiments
were performed on a Pentium III (1Gz) workstation with 0.5GB RAM. The
average processing time was 1.02 s per frame. The minimum and maximum
processing time was 0.43 s and 8.65 s per frame, respectively. In all the
experiments, the thresholds J, and J, were set to 20 and 10~°, respectively.
These values were experimentally determined. We present the experimental
results obtained from two synthetic image sequences called HAZEL-S as well
as three real image sequences called HAZEL-A, HAZEL-B and HAZEL-C.

For the first experiment, we applied the Maximum-Likelihood motion es-
timation algorithm to the synthetic image sequence HAZEL-S depicting a
moving right arm from a virtual human. The dimensions of the arm corre-
spond to the dimensions of the right arm of one of the co-authors. The syn-
thetic image sequence was generated by obtaining 400 images (RGB, 640x480
pixels?) of the arm at different times while the arm is moving along a prede-
fined trajectory. Fig. 9 depicts six frames from the synthetic image sequence.
The maximum value of the magnitude of the frame to frame translation vec-
tor of the shoulder, elbow, and wrist in the 3D virtual world is 0.5 cm, 1.15
cm, 1.89 cm, respectively. The maximum value of the magnitude of the frame
to frame displacement vector of the shoulder, elbow, and wrist in the image
plane is 2.22 pixels, 4.95 pixels, and 9.15 pixels, respectively.

Fig. 10 depicts the estimated translation vector and the rotation angles of
the upper arm, and the estimated rotation angles of the lower arm from each
frame of the synthetic image sequence to the next. Fig. 11 depicts the ground
truth and the positions (computed using the estimated motion parameters)
of the shoulder, the elbow, and wrist for the first 100 frames of the synthetic
image sequence. Fig. 12 depicts the magnitude of the position error for
the shoulder, the elbow, and the wrist for all the frames of the synthetic
image sequence. The mean of the magnitude of the position error of the
shoulder, the elbow and the wrist is as follows: |AA spouiger| = 0.056743 cm,
|AA cipow| = 0.049568 cm, and |AA,,.s¢| = 0.055171 cm, while the variance
is 0.003976 cm?, 0.002582 cm?,and 0.009226 cm? respectively. According to
Fig. 12 the magnitude of the position error appears to increase quickly at
the beginning of the image sequence. However, later in the image sequence
the magnitude of the position error stops to increase and begins to decrease.
The plots indicate that the motion estimation algorithm is able to recover
from previous position errors. This is due to the fact that previous position
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errors are being taken into account for motion estimation by means of the
covariance matrix.

For the second experiment, we tested the Maximum-Likelihood motion
estimation algorithm using the HAZEL-C sequence (354 frames) depicting a
woman moving her right index finger along a rectangle with known position,
orientation and dimensions (Figs. 13(a-f)). Figs. 13(g-1) depict the model
at the estimated position and orientation overlayed at the image sequence.
Fig. 14 depicts the estimated translation vector and the rotation angles of
the upper arm and the estimated rotation angles of the lower arm from each
frame of the real image sequence HAZEL-C to the next. Fig. 15 depicts
the ground truth and the positions (computed using the estimated motion
parameters) of the right index finger for the subject depicted in the HAZEL-
C sequence. Figs. 16(a-c) depict the mean of the absolute position error along
the x, y and z axis of the world coordinate system for all the frames of the
image sequence. Fig. 16(d) depicts the mean of the magnitude of the position
error for all the frames of the image sequence. The mean of the magnitude of
the position error of the right index finger is |AA fiyger| = 0.570256 ¢cm, while
the variance is 0.099233 ¢cm?. The mean and variance of the magnitude of
the position error on the image plane is 1.099577 pixel and 0.586255 pixel?,
respectively. The minimum and the maximum value of the magnitude of the
position error is 0.062808 cm and 1.856693 cm, respectively. The minimum
and maximum value of the magnitude of the position error on the image
plane is 0.043543 pixel and 3.142040 pixel, respectively. The minimum and
maximum value of the magnitude of the component of the position error
parallel to the image plane is 0.024343 cm and 1.711261 cm, respectively.
The minimum and maximum value of magnitude of the component of the
position error perpendicular to the image plane is 0.001584 cm and 1.723885
cm, respectively.

For the third experiment, we tested the Maximum-Likelihood Motion
Estimation Algorithm using the HAZEL-A and HAZEL-B sequences (200
frames each) depicting a woman grasping (Figs. 17(a-f)) and moving (Figs.
19(a-f)) an object in front of a bookshelf. Figs. 18 and 20 depict the es-
timated translation vector and rotation angles of the upper arm and the
estimated rotation angles of the lower arm from each frame of the real image
sequence HAZEL-A to the next and from each frame of the image sequence
and HAZEL-B to the next, respectively. Figs. 17(g-1) and 19(g-1) depict
the models at the estimated position and orientation overlayed at the image
sequences. Although the model remains well aligned during tracking, some
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position errors can still be observed. For example, a peak error is observed in
all the curves in Fig. 18 for frame 116. In that frame (Fig. 17(j)) the shoul-
der has drifted backwards. However, the algorithm quickly compensated for
these errors and tracking was not lost.

Figs. 21(a-f) and Figs. 21(g-1) depict the coronal and the sagittal view of
the virtual ROBONAUT from the NASA being animated with the estimated
motion parameters of HAZEL-A. Figs. 22(a-f) and Figs. 22(g-1) depict the
coronal and the sagittal view of the virtual ROBONAUT being animated
with the estimated motion parameters of HAZEL-B.

5 Conclusions

We have implemented the Maximum-Likelihood motion estimation algorithm
of articulated objects proposed in [34, 32] and applied it for estimating the
motion of a moving human arm. Then, we performed a number of experi-
ments on synthetic and real data to assess its accuracy, limitations and ad-
vantages. The experimental results with synthetic image sequences revealed
a position error for the shoulder, elbow and wrist of 0.6+0.6 mm, 0.54+0.5
mm and 0.6+£1.0 mm, respectively. The experimental results with real image
sequences revealed a position error for the right index finger of 0.5740.31
cm. Furthermore, the model object remained well aligned during the tested
image sequences. Although some position errors could be observed, the algo-
rithm was able to compensate for those errors and never lost tracking. This
ability for recovering from previous position errors is due to the fact that pre-
vious position errors are being taken into account during motion estimation.
Finally, we have used the motion estimates to remotely command the right
arm of a virtual ROBONAUT. The control communication is done through
a ROBONAUT API developed at NASA - JSC and the commercial product
Real Time Innovations, Inc. (RTI) Network Data Delivery Service (NDDS).

Acknowledgments
We acknowledge the support of the University of Houston’s Institute for
Space Systems Operations (http://www.isso.uh.edu) with a Postdoctoral Fel-

lowship to Dr. Martinez and the support of Real Time Innovations, Inc., with
a software grant (NDDS).

27



References

1]

2]

[5]

J.K. Aggarwal and Q. Cai. Human motion analysis: A Review. Com-
puter Vision and Image Understanding, 73(3), 1999.

C. Barrén and I.A. Kakadiaris. Estimating anthropometry and pose
from a single image. In Proceedings of the 2000 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 669
676, Hilton Head Island, SC, June 13-15 2000.

C. Barrén and I.A. Kakadiaris. On the improvement of anthropometry
and pose estimation from a single uncalibrated image. In IEEE Work-
shop on Human Motion, pages 53-60, Austin, TX, December 7-8 2000.

C. Barrén and ILA. Kakadiaris. Estimating anthropometry and pose
from a single uncalibrated image. Computer Vision and Image Under-
standing, 81(3):269-284, 2001.

C. Barrén and I.A. Kakadiaris. On the improvement of anthropometry
and pose estimation from a single uncalibrated image. Submitted to the
Machine Vision and Applications - Special Issue on Human Modeling,
Analysis and Synthesis, May 2002.

B. Bluethmann. ROBONAUT API: Version 1.0. Manual, Dexterous
Robotics Laboratory, NASA - Johnson Space Center, 2001.

C. Bregler and J. Malik. Tracking people with twists and exponential
maps. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 815, Santa Barbara,
CA, June 23-25 1998.

Z. Chen and H.J. Lee. Knowledge-guided visual perception of 3D human
gait from single image sequence. IEEE Transactions on Systems, Man,
and Cybernetics, 22(2):336 — 342, 1992.

D. DeCarlo and D. Metaxas. Optical flow constraints on deformable
models with applications to face tracking. International Journal in Com-
puter Vision, 38(2):99-127, July 2000.

28



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Q. Delamarre and O. Faugeras. 3D articulated models and multi-view
tracking with silhouettes. In Proceedings of the 7th International Confer-
ence on Computer Vision, pages 716-721, Kerkyra, Greece, September
20-27 1999.

D.M. Gavrila. The visual analysis of human movement: A survey. Com-
puter Vision and Image Understanding, 73(1), January 1999.

D.M. Gavrila and L.S. Davis. 3-D model-based tracking of humans in
action: a multi-view approach. In Proceedings of the 1996 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition,
pages 73-80, San Francisco, CA, June 18-20 1996.

Luis Goncalves, Enrico Di Bernardom, Enrico Ursella, and Pietro Per-
ona. Monocular tracking of the human arm in 3D. In Proceedings of
the Fifth International Conference on Computer Vision, pages 764-770,
Boston, MA, June 20-22 1995.

M. Goza. Enigma user manual. Manual, Interactive Graphics, Op-
erations, and Analysis Laboratory (IGOAL), NASA - Johnson Space
Center, 2001.

M. Goza. ROBONAUT API: Robosim v2.2. Manual, Dexterous
Robotics Laboratory, NASA - Johnson Space Center, 2001.

D. Hogg. Model-based vision: A program to see a walking person. Image
and Vision Computing, 1(1):5 — 20, 1983.

R.J. Holt, A.N. Netravali, T. S. Huang, and R.J. Qian. Determining
articulated motion from perspective views: A decomposition approach.
Pattern Recognition, 30:1435-1449, 1997.

Y. Iwai, K. Ogaki, and M. Yachida. Posture estimation using structure
and motion models. In Proceedings of the International Conference on
Computer Vision, pages 214 — 219, 1999.

S.X. Ju, M.J. Black, and Y. Yacoob. Cardboard: a parameterized model
of articulated image motion. In Proceedings of the Second International
Workshop on Automatic Face and Gesture Recognition, pages 38 — 44,
September 1996.

29



[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

I. A. Kakadiaris and D. Metaxas. Model-based estimation of 3D human
motion with occlusion based on active multi-viewpoint selection. In
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 81-87, San Francisco, CA, June
18-20 1996.

[.A. Kakadiaris. Optical tracking for telepresence and teleoperation
space applications. White paper, University of Houston, Houston, TX,
1999.

[LA. Kakadiaris and D. Metaxas. 3D human body model acquisition
from multiple views. In Proceedings of the International Conference on
Computer Vision, pages 618-623, Boston, MA, June 20-23 1995.

[.A. Kakadiaris and D. Metaxas. 3D human body model acquisition from
multiple views. International Journal of Computer Vision, 30(3):191-
218, 1998.

[.A. Kakadiaris and D. Metaxas. Model-based estimation of 3D human
motion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(12):1453-1459, 2000.

[.A. Kakadiaris and R. Sharma, editors. Proceedings of the IEEE Human
Motion Analysis and Synthesis Workshop, Hilton Head Island, South
Carolina, June 2000. IEEE Computer Society Press.

[.A. Kakadiaris, R. Sharma, and M. Yeasin. Editorial comments on
the special issue on human modeling, analysis and synthesis. Machine
Vision and Applications, May 2002.

F. Kappei and C. Liedtke. Modelling of a 3-D scene consisting of moving
objects from a sequence of monocular TV images. In Proceedings of the
Real Time Image Processing SPIE Conference: Concepts and Technolo-
gies, pages 126-130, 1987.

R. Koch. Dynamic 3D scene analysis through synthesis feedback con-
trol. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
15(6):556-568, June 1993.

30



[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

H. Li, P. Roivainen, and R. Forchheimer. 3D motion estimation in
model-based facial image coding. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 15(6):545-555, June 1993.

G. Martinez. Shape estimation of articulated 3D objects considering
mutual occlusions for object-based analysis-synthesis coding (OBASC).
In Proceedings of the Picture Coding Symposium, Melbourne, Australia,
March 1996.

G. Martinez. Shape estimation of articulated objects for object-based
analysis-synthesis coding (obasc). Signal Processing: Image Communi-
cations, 9(3):213 — 216, 1997.

G. Martinez. Analyse-Synthese-Codierung basierend auf dem Modell be-
wegter dreidimensionaler, gegliederter Objecte. PhD thesis, University
of Hannover, Hannover, Germany, 1998.

G. Martinez. Analysis-synthesis coding based on the source model of ar-
ticulated three-dimensional objects. In Proceedings of the Picture Coding
Symposium, Portland, Oregon, March 1999.

G. Martinez. Maximum-likelihood motion estimation of articulated ob-
jects for object-based analysis-synthesis coding. In Proceedings of the
Picture Coding Symposium 2001, pages 293 — 396, Seul, Korea, April
25-27 2001.

D. Meyer, J. Denzler, and H. Niemann. Model based extraction of
articulated objects in image sequences. In Proceedings of the Fourth
International Conference on Image Precessing, pages 78 — 81, 1997.

T. B. Moeslund and E. Granum. A survey of computer vision-based
human motion capture. IEEE Transactions on Systems, Man, and Cy-
bernetics, 81(3):231 — 268, 2001.

Thomas B. Moeslund and Erik Granum. 3D human pose estimation
using 2D-data and an alternative phase space representation. In I.A.
Kakadiaris and R. Sharma, editors, Proceedings of the IEEE Workshop
on Human Modeling, Analysis and Synthesis, pages 26-33, Hilton Head
Island, SC, June 16 2000.

31



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E-J. Ong and S. Gong. Tracking hybrid 2D-3D human models through
multiple views. In Proceedings of the Workshop on Modelling People at
1CCV’99, pages 11 — 18, September 1999.

J. Ostermann. Object-based analysis-synthesis coding based on the
source model of moving rigid 3D objects. Signal Processing: Image
Communications, 6(2):143-161, 1994.

R. Plankers, P. Fua, and N. D’Apuzzo. Automated body modeling from
video sequences. In Proceedings of the IEEE International Workshop on
Modeling People, pages 4552, Corfu, Greece, September 20 1999.

K. Rohr. Towards model-based recognition of human movements in
image sequences. Computer Vision, Graphics and Image Processing,
59(1):94 — 115, January 1994.

R. Rosales and S. Sclaroff. Learning and synthesizing human body mo-
tion and posture. In Proceedings of the fourth International Conference
on Automatic Face and Gesture Recognition, pages 506 — 511, March
2000.

S. Wachter and H.-H. Nagel. Tracking of persons in monocular image
sequences. In Proceedings of IEEE Nonrigid and Articulated Motion
Workshop, pages 2-9, Puerto Rico, June 16 1997. IEEE Computer So-

ciety.

C. R. Wren and A. P. Pentland. Dynamic models of human motion. In
Proceedings of the 3rd International Conference on Automatic Face and
Gesture Recognition, pages 22 — 27, Nara, Japan, April 1998.

M. Yamamoto and K. Koshikawa. Human motion analysis based on a
robot arm model. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages 664 — 665,
Lahaina, Maui, Hawaii, June 3 - 6 1991.

M. Yamamoto, Y. Ohta, T. Yamagiwa, and K. Yagishita. Human action
tracking guided by key-frames. In Proceedings of the fourth International
Conference on Automatic Face and Gesture Recognition, pages 354 —
361, March 2000.

32



[47] M. Yamamoto, A. Sato, and S. Kamada. Incremental tracking of hu-
man actions from multiple views. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages
2 — 7, June 1998.

33



(a) (b) (c)

(d) (e) (f)
Figure 9: (a-f) Frames 1, 25, 75, 230, 320, and 360 from the synthetic image
sequence, respectively.

34



04
02
0
02
04

4. [degrees]

1
05
05
B

8.0 [degrees]

1
0s
05
-1

AT e

(] 50 100 150 200 250 300 350 200
frame

(a)

{degrees]

Y

ad

a4l idogrees

o 50 100 150 200 250 300 350 200
frame

(@)

Y

80 [degrees]

B dogress)

o 50 100 150 200 250 300 350 400
frame

(2)

50 100 150 200 250 300 350 400 ) 50 100 150 200 250 300 350
frame frame

(1)

Figure 10: Motion estimation for the moving arm depicted in HAZEL-S1.
(a-c) depict the estimated components of the translation vector of the upper

arm (AT, A/i?, and A/\TZU), (

d-f) depict the estimated rotation angles of the

—

upper arm (Aw?, Aw), and Aw?), and (g-i) depict the estimated rotation

—_——

angles of the lower arm (Awj, Aw], and Aw}). The solid line represents the
ground truth values while the dotted one depicts the estimated values.
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wrist during the first 100 frames of the image sequence HAZEL-S. The solid
line represents the ground truth position and the dotted one the estimated
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Figure 12: (a-c) Plots of the magnitude of the position error for the shoulder
(|AA shoutder|), the elbow (JAA pow|), and the wrist (JAA ,i5]) of the moving

arm for all the frames of the image sequence HAZEL-S.
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Figure 13: (a-f) Frames 1, 60, 120, 180, 300, and 354 from the sequence
HAZEL-C, respectively. (g-1) Original frames with the model overlayed at
the estimated position and orientation.
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Figure 14: Motion estimation for the moving arm depicted in the image
sequence HAZEL-C. (a-c) depict the estimated components of the translation

—_——

vector of the upper arm (AT, AT?, and A/\TZO), (d-f) depict the estimated
rotation angles of the upper arm (A/Jg, A/Jg, and Aw?), and (g-i) depict the

estimated rotation angles of the lower arm (Aw}, Aw}, and Aw}).
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Figure 15: (a-b) Plots of the position of the right index finger of the sub-
ject depicted in the image sequence HAZEL-C. The solid line represents the
ground truth position and the dotted one the computed position (using the
motion estimates).
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Figure 16: (a-c) Plots of the absolute position error of the index finger along
the x, y, and z axis (‘AA{;i”ge’"‘, ‘AAZJI%”QW‘, ‘AAf:i”ge’"‘) for all the frames
of the image sequence HAZEL-C. (d) Plot of the magnitude of the position
error of the index finger (JAA finger|) for all the frames of the image sequence
HAZEL-C.
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Figure 17: (a-f) Frames 1, 40, 80, 116, 160, and 200 from the sequence
HAZEL-A. (g-1) Original frames with the model overlayed at the estimated
position and orientation.
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Figure 18: Motion estimation for the moving arm depicted in the image
sequence HAZEL-A. (a-c) depict the estimated components of the translation

vector of the upper arm (A/Y\’a?, A/ZFZ?, and A/\TZO), (d-f) depict the estimated

rotation angles of the upper arm (Aw?, Awf, and Aw?), and (g-i) depict the

estimated rotation angles of the lower arm (@, A/J;, and A/J;)
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Figure 19: (a-f) Frames 1, 45, 90, 160, 180, and 200 from the sequence
HAZEL-B. (g-1) Original frames with the model overlayed at the estimated
position and orientation.
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Figure 20: Motion estimation for the moving arm depicted in the image

sequence HAZEL-B. (a-c) depict the estimated components of the translation
vector of the upper arm (AT?, AT?, and ATY?), (d-f) depict the estimated
rotation angles of the upper arm (Aw?, Awf, and Aw?), and (g-i) depict the

estimated rotation angles of the lower arm (Aw}, Aw/, and A/J;)
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Figure 21: Commanding a ROBONAUT simulation developed at NASA -

JSC with the estimated motion parameters of the HAZEL-A sequence. (a-f)

Coronal and (g-1) sagittal view of the postures corresponding to the frames
1, 40, 80, 116, 160, and 200 of the sequence.
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Figure 22: Commanding a ROBONAUT simulation developed at NASA -
JSC with the estimated motion parameters of the HAZEL-B sequence. (a-f)

Coronal and (g-1) sagittal view of the postures corresponding to the frames
1, 45, 90, 160, 180, and 200 of the sequence.
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