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Abstract
An algorithm for motion estimation of articulated 3D objects for object–based analysis–synthesis coding (OBASC) is
presented. For motion estimation an articulated object is first decomposed automatically into flexibly connected object–
components. Each rigid 3D object–component is assumed to be connected to the object by spherical joints. Then, the 3D
motion of the largest object–component is estimated without considering the other components. Finally, the motion analysis
is propagated to the rest of the object–components taking into account the spatial constraints  enforced by the spherical joints.
The developed algorithm has been incorporated in an OBASC which uses articulated 3D model objects. For the standard
videophone test sequence Claire (CIF, 10Hz) the transmission rate decreases from  53 kbit/s to 48 kbit/s at a fixed image
quality by applying the proposed motion estimation algorithm.

1. Introduction
For coding of moving images at low data rates object–based analysis–synthesis coding (OBASC)[8] is investigated. An
OBASC scheme describes each image of a sequence by moving model objects. Each model object is defined by three sets
of parameters defining its motion, shape and color. Color parameters denote the luminance as well as the chrominance
reflectance on the object surface. The sets of parameters depend on the applied source model and have to be estimated
automatically. Image regions where the description by the applied source model fails are called Model Failure regions
(MF–regions). Color parameters are transmitted for MF–regions only. Since the transmission of color parameters is expen-
sive in terms of data rate, the total size of all MF–regions should be kept as small as possible.

Ostermann[9] proposes an OBASC scheme based on a source model of ”moving rigid 3D objects” (OBASCR3D).
According to this source model, model objects are rigid with 3D shape and moving in the 3D space. The motion  is defined
by a set of 6 parameters which describe the translation and rotation of the object in the 3D space.  The 3D shape is represented
by a mesh of triangles which is put up by vertices denoted as control points. The color parameters are taken by projection
of a real image onto the surface of the mesh of triangles. Objects may be articulated, i.e. may consist of two or more flexibly
connected rigid 3D object–components. In computer graphics, object–components  are sometimes called links. Each
object–component has its own set of motion, shape and color parameters. Since the shape of each object–component is
defined by its control points, object–components are connected by those triangles having control points belonging to
different object–components. Due to these connecting triangles, object–components are flexibly connected.  Connecting
triangles may enforce constraints on the spatial location of object–components.

For motion estimation of articulated objects a hierarchical coarse to fine approach is proposed by Koch[4] and used by
Ostermann[9], Kampmann[3] and Martínez[5][7]. However, motion estimation fails when the object–components have
strongly different motions, because no spatial constraints are considered, i.e. the connecting triangles do not enforce a
constraint on the spatial location of the object–components. In a paper by Hsu[2] the 3D motion estimation of a person’s
arm is calculated, however no spatial constraints are  taken into account. Holt[1] uses spatial constraints in order to improve
motion estimation of articulated objects. Therefore, the object is first manually decomposed into simple articulated subparts.
Each subpart contains a small number of object–components. Components conforming a subpart are confined to motion
within a plane (coplanar motion) and connected to each other by revolute joints[10] i.e. the spatial constraints between two
components are modeled by one revolute joint. A revolute joint allows only relative angular rotation between components
about the revolute joint axis which is perpendicular to the motion plane and does not allow that components may rotate
themselves. Motion estimation determines first the motion of the most simple subpart(s) and then propagates the analysis
to the remaining subparts of the object. The estimation algorithm evaluates more than two consecutive frames of the image
sequence to generate one estimate.

In this contribution an algorithm for motion estimation of articulated objects is presented which considers  more
sophisticated spatial constraints. For motion estimation, the object is first automatically articulated into flexibly connected
object–components using the method for object–articulation proposed in [5][7]. Each subpart contains a single object–com-
ponent. Object–components are connected together by spherical joints[10] instead of revolute joints. A spherical joint
allows non restricted relative angular rotations between two object–components and that  object–components may rotate
themselves. Motion estimation determines first the motion of the largest object–component without considering spatial
constraints. Then, motion analysis is propagated to the remaining object–components taking into account the spatial
constraints on the articulated object. For motion estimation of an object–component a gradient method is applied which
requires the evaluation of two consecutive frames of the image sequence only in order to estimate the motion parameters.

The performance of the developed algorithm is evaluated in an (OBASC)[9] scheme in terms of coding efficiency. The
coding efficiency is measured by the reduction of the bit rate at a fixed image quality measured by PSNR.



The paper is organized as follows. In Section 2, the proposed algorithm for 3D motion estimation of articulated objects
is presented. In Section 3, experimental results are given. Final discussions are presented in Section 4.

2. Algorithm for 3D motion estimation of articulated objects

In this section, a new algorithm for motion estimation of articulated 3D objects is presented. Fig. 1 represents the stick model
of typical articulated object.  For motion estimation, object–components are assumed to be rigid and their shape known. The
shape of articulated objects can be estimated using the algorithm proposed by Martínez[5][7].
Let ma and mb be two object–components connected by a spherical joint (see Fig. 2). The 3D motion of the object–compo-
nent ma is described by the motion parameters Ama � (Tma
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which defines the rotation in the mathematically positive direction around the x–, y– and z–axis with the rotation center Cma.
A similar motion equation can be written for the object–component mb:

P�(e) � [RCmb] � (P(e) � Cmb) � Cmb � Tmb (3)

where P(e) is an arbitrary point on the surface of an object–component mb.

Because of the constraints imposed on the articulated object, motion parameters are not independent. They are, in general,
related by a set of constraint motion equations that represent joints. Each constraint motion equation can be used to eliminate
one motion parameter by writing this motion parameter in terms of the others, provided the constraint motion equations are
linearly independent.  In the case of two object–components ma and mb connected by a spherical joint,  the constraint motion
equations require that the global position of the spherical joint J � (Jx, Jy, Jz)T defined by the set of coordinates of the
object–component mb moves to the same global position J� defined by the set of coordinates of object–component ma.This
condition gives three constraint motion equations that can be written as:

[RCmb] � (J�Cmb)�Cmb �Tmb � [RCma] � (J�Cma)�Cma �Tma (4)

If Tma is selected as dependent motion parameters it can be expressed in terms of the other motion parameters as:

Tma � [RCmb] � (J � Cmb) � Cmb � Tmb � [RCma] � (J � Cma) � Cma (5)

Combining Eq. (5) and the Eq. (1) the motion equation of an arbitrary object–component ma, which considers motion
constraints enforced by a spherical joint at position J, is giving by:

P�(i) � [RCma] � (P(i) � J) � [RCmb] � (J � Cmb) � Cmb � Tmb (6)

Thus, for estimating the motion of an arbitrary object–component ma (see Fig. 2) connected  to an object–component mb
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estimated because the translation Tma can be written in terms of the independent motion parameters  Amb, Rma and the
position of the spherical joint J  according to Eq. (5). For determining the rotation parameters Rma, motion estimation
supposes that differences between two consecutive images sk and sk�1 are due to the object motion only and that the shape
of the object–component is known. The motion estimation method minimizes the mean square luminance difference
between a perspective projection of the object–component’s luminance onto the image plane of a model camera s�k and the
corresponding luminance of the current image sk�1. Therefore, a gradient method is applied which uses one set of observa-
tion points from the model object–component ma. Each observation point O(j)
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parameters of the 3D model object were derived. The criterion for selecting observation points is a high spatial gradient.
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where F is the focal length of the model camera.

In order to improve the reliability, Eq. (7) has to be established for several hundred observation points and only observation
points should be used for which the following inequation is satisfied:

|�I � �Imb|  �I (8)
where  �I is the standard deviation of all residuals �I � �Imb  according to Eq. (7).  The residuum of this equation system
is then minimized by an Gauß method for least squares error:

�
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Due to the linearization, motion parameters have to be estimated iteratively. After every iteration, the model object–compo-
nent ma is moved according to Eq. (6) using the estimated rotation parameters. A new set of motion equations is then
established, giving new rotation parameters updates. In case of convergency the rotation parameter updates approach zero
during the iterations.
For typical articulated objects like human bodies and robot arms, which consist of many object–components, if all the
constraint motion equations are written down, a very large system is obtained which is most likely impossible to solve. In
order to avoid this difficulty an approach of decomposition and propagation of motion estimation is applied in this contribu-
tion. This approach decomposes first the object automatically into flexibly connected object–components[5][7]. Object–
components are connected to each other by spherical joints. Then, it  estimates the motion parameters of an arbitrary
object–component mr (root object–component) without considering motion constraints. Finally, the motion analysis is
propagated to the rest of the object–components taking into account motion constraints between object–components using
Eq. (5) and Eq. (7). For estimating the 3D motion parameters of the root object–component mr the algorithm proposed in
[9] is applied. Since the reliability of this algorithm depends on the size of the object component[6], the largest object–com-
ponent of the articulated object is chosen as the root component. Propagation of motion analysis is explained using the
articulated object of Fig. 1 as example. After 3D motion estimation of the root object–component mr the motion parameters
of the object–components m1, m4 and m5 can be estimated applying Eq. (5) and Eq. (7). Knowing the motion parameters
of the object–components m1, m4 and m5  the motion parameters of the object–components m2 and m6 can be then
calculated. Finally, using the motion parameters of the object–component m2 the motion parameters of the object–compo-
nent m3 are estimated. This method can be generalized as follows:  if the motion parameters of an arbitrary object–compo-
nent mr of an articulated object are known, the motion parameters of the rest of the object–components can be estimated
propagating motion estimation from the object–component mr to the farthest object–component using Eq. (5) and Eq. (7).

3. Experimental results
OBASC according to Ostermann[9] and OBASC with the developed algorithm for motion estimation of articulated objects
(OBASC*) are applied to the test sequence ”Claire” (CIF, 10Hz). Fig.3 represents the stick model of Claire. The object was
automatically decomposed into object–components using the approach for shape estimation of articulated  3D objects
proposed by Martínez[5][7]. The position of the spherical joint is supposed to be the center of gravity of the connecting
triangles between object–components. Color parameters of model failures were coded with a PSNR of 36 dB. In the
experiment both coders were initialized using the first original image of the sequence. The average size of MF–regions
obtained by OBASC and OBASC* is 2.9% and 2.5% of the image area, respectively. Using 1.2 bit/pel for coding of color
parameters, the overall bit rate is reduced from 5300 bit/frame to 4800 bit/frame (see Fig. 4).

4. Conclusion
In order to reduce the total size of MF–regions the source model of ”moving articulated 3D objects” is used instead the source
model of ”moving rigid 3D objects”. In this contribution an algorithm for 3D motion estimation of articulated objects which
considers spatial constraints was described. The spatial constraints enforced by the connecting triangles between two
object–components are modeled by one spherical joint. In order to reduce the complexity of the motion estimation algorithm,
an approach of propagation of motion estimation is applied. The developed algorithm has been incorporated in the image
analysis of OBASC[9]. For shape estimation of articulated objects the method proposed by Martínez[5][7] is used. The



”head and shoulders” videophone test sequence ”Claire” (CIF, 10Hz) has been used. Experimental results show that
considering spatial constraints the average size of MF–regions decreases  from 2.9% to 2.5%. The reduction was particularly
large by those frames with strongly different motion between object–components (see Fig. 4). Maintaining the same picture
quality measured by PSNR=36 dB in the image regions of model failures, this reduction of the average size of MF–regions
leads to a reduction of the transmission rate from 53 kbit/s to 48 kbit/s.
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Fig. 1  Simplified stick model of an articulated
object
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Fig. 2  Two object–components       and       con-
nected by one spherical joint at position    which
allows only relative angular rotations between
the two object–components.
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