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Abstract

A robust algorithm for estimating 3D—motion of small surface patches of a 3D—object is described. The
robustness is measured by the probability of convergency to correct parameters. The 3D motion is estimated
by a gradient method, which uses alocal luminance error model, a motion compensated Kalman Filter and
a selected neighboring surface around the patch. This technique can be used for automatic modelling of
flexibly connected rigid 3D object components considering mutual occlusion.

1. Introduction

To model 3D scenesfrom 2D image sequences, amodel—based image analysi s describes each moving object

m by amodel object with 3 sets of parameters defining its motion A(™M | shape M ™M | and color S™. The
parameter sets depend on the type of motion model being applied. In this contribution, the motion model of
rigid 3D objects is used [3]. According to this motion model, the motion parameters

AM = (T, T, T, RM, RIM, RIM) describe the motion of arigid object in 3D space. T{™, T{™, and
T{™ represent the translation and R{™, R(™, and R{™ the rotation. The shape of the 3D-model object is

described by a mesh of triangles which is put up by a set of vertices referred as control points. The color
parameters define the luminance and chrominance reflectance of the object surface and are taken from areal
image by projection of the corresponding part of the real image onto each visible triangle of the mesh. Each
image of a sequence can be reconstructed from the parameters of the model object by projecting the color
parameters onto the image plane of the model camera.

In order to estimate the 3D motion parameters A™M of an object a basic algorithm was developed in [4].
However, dueto thesmall surface of asurface patch, the probability of convergency to correct parameterswill
be low. For increasing the probability of convergency the number of the motion parameters to be estimated

was reduced in [1]. However, this has the disadvantage that only three parameters (T{™, T{™, R{™) can be
calculated.

This contribution presents an a gorithm for estimating the 6 motion parameters of a small surface patch of a
3D—object based on agradient method which triesto achieve ahigher probability of convergency and accuracy
thanthealgorithm describedin[4]. In order to improvethe probability of convergency the proposed technique

uses a selected neighborhood around the surface patch and for improving the accuracy, it applies a local
luminance error model and a motion compensated Kalman filter.

In section 2, the proposed 3D motion estimation algorithm is described. In section 3 and 4, first resultson a
synthetically generated image sequence and areal image sequence respectively are discussed.

2. The 3D motion estimation algorithm

Fig. 1 showsarigid mode object with a surface patch s of which the 3D—motion shall be estimated. The 3D
motion is described by the parameters A® = (T, T§,5), TS, RO, R§S), R) defining transl ation and rotation.
The surface patch s represents a surface of a 3D model object and consists of N control points
PO, P@, .. ,PUY and qtriangles. An arbitrary point PO on the surface of sismoved to its new position
P'® according to:

PO = [RY] - (PO — CO) + CO + TO 2.1)
with the trandlation vector T© = (T§(S),T§,S),T§5))T, the surface patch center

N
CO = (c{,clH,ch) = %Z PO and the rotation matrix[R{] which is defined by the rotation angles
=1
R, R, R, around x—, y— and z—axes with the rotation center C.

To estimate the 3D motion of a surface patch it is assumed that differences between two successive images
sk and s¢+1 are due to object motion only and that the shape of the object is known. For simplification, it is
assumed that only onetriangle buildsasurface patch s. In order to estimate 3D—motion the proposed algorithm
minimizesthe mean square luminance difference between a proj ection of thetriangl€’sluminance component
onto the image plane of amodel camera and the corresponding luminance of the current image s¢+1. For that
purposeagradient method isapplied. It usesone set of observation pointsfrom each triangle. Each observation

point 00 = (P0,g0,10)) is located on the triangle surface and is described by its position



PO = (PD), PO, PI)T, itsluminancevalue |V anditsspatial linear gradient g0 = (g¢, g¢)T. Theluminan-
ce and gradient are taken from the same image of which the color parameters of the 3D model object were
derived. The measure for selecting observation pointsis a high spatial gradient. For each observation point,

the luminance difference Al between image s¢ and s¢+1 is related to motion by the following linearized
equation:

Al = F-gy/P, - TO
+F - gy/P, - T®
— [(Px3x + Pygy)F/P% + Al/P] - TS
— [[P«gx(Py — C) + Pygy(Py — C) + P,gy(P, — CO)IF/PZ + Al/P,(P, — CP)] - RY
+ [[Py@y(Px — C¥) + Pygx(Px — CP) + Pgx(P, — CO)IF/PZ + Al/P,(P, — CP)] - R
= [9dPy = CP) — gy(P — CP)IF/P; - RY

(2.2)

with the focal length of the camera F, the unknown motion parameters A® = (T, T, TO, RS, R, RY)
and the observation point O, = (P,,9,1) at position P, = (P, Py, P)T.
The expression (2.2) can be written as:

Al = [H] - AOT (2.3)

Using at least 6 observation points, we have alinear system of equations that can be solved by an iterative
Newton method for least square error[3][4]. Here, in order to improve the accuracy of the estimatesamoation
compensated Kalman filter[2] using a local luminance error model is applied. In a motion compensated
Kaman filter, a 3D motion estimation of the triangle is carried out before the Kalman filter is applied. This
is achieved by solving the set of equations by an iterative Newton method for least square error. Then, to
improve the accuracy of those estimates, a Kalman filter is applied using alocal luminance error model | gm
for each observation point O = (P, g,1). Equation (2.3) is extended for the Kalman Filter to the following
equation:

Al = [H] - AOT 4+ | (2.4)

| e isthe luminance error which is modelled by the luminance error model |¢,. Only those observation points
areused by the Kalman Filter where the local luminance error model was found to be valid. The luminance
error model considers for each observation point both, the luminance error due to the shape error of the
3D—model object AP and the luminance error due to cameranoise. The shape error and the cameranoise are
statistically independent. Asafirst approach, the shapeerror AP ismodelled by aGaussian stationary random
process describing the shape error of each observation point in the x, y and z directions. These errors are

assumed to be uncorrel ated, with mean 0 and the same variance o,,2. In order to compute the luminance error
duetotheshapeerror AP, only itsprojection Apginthedirection of theluminance gradient ontheimage plane
is considered[7]. Therefore, the shape error AP is mapped to a vector Ap onto the image plane by a linear
transformation of the model camera. Then, the vector Ap is projected onto the unit luminance gradient vector

g'/lg| for getting Apg. Theresulting luminance error variance 0,\,,92 can be written as:

G2
Omg” = fz% [ 83(P + PO + 209,PPy + 9,4P;° + R ] (2.5)

z

The cameranoiseis supposed to be a Gaussian uncorrel ated zero-mean noise with variance o,2. Finally, the
luminance error | is modelled by a Gaussian stationary random process with mean 0 and variance

2 _ 2 2
0y, = Oyg~ + On".

In order to improve the probahility of convergency and consequently the robustness of the algorithm, the
number of observation pointsto be used for the estimationisincreased. For that purpose, both thetriangle and
its neighboring triangles are taken into account for 3D—motion estimation. However, increasing the number
of considered observation points improves the robustness of this algorithm only if the observation points of
the neighboring triangles and the observation points of the triangle itself follow the same motion, i.e. belong
to the same object. In order to minimize the probability that neighboring triangles from different objects are
chosen, for each triangle the neighboring triangles are selected by a 2D segmentation. The regions found by
the 2D segmentation represent approximately the silhouettes of the objects in the image. Then, in order to
estimate the 3D motion parameters of a triangle, a neighboring triangle will be used only if both triangles
belong to the same region found by the 2D segmentation. In this contribution, the 2D segmentation is based
on a segmentation of the displacement vector field inside of the silhouette of the 3D model object. The
displacement vector field is calculated by hierarchical block matching[6] using the current image S, , ; and



the previous image S,.. To obtain the segmentation a multithresholding technique[5] is applied. Finaly, the
obtained segmentation isimproved by local analysis of the contours near the boundary of the different regions
which were found.

3. Experimental results using a synthetically generated image sequence

Toexaminethe probability of convergency and theaccuracy, asynthetically generated image sequenceisused.
Each frame of this sequence was generated moving a 3D—model object one pixel in both x and y directions
and projecting its color parameters onto the image plane of a model camera.

To evaluate the probability of convergency, the maximal norm of the error of the estimated translation
parameters || my || and the maximal norm of the error of the estimated rotation parameters | mg, || are used:

Im = max( [T - Ty, TP =Ty TP -T,) (31
Img = max( RS - R, RE - Ry, RY —R,) 32

Here A = (T&S),T§,s),T§S),R§(S), R§,S),R§5)) arethetruemotion parameterswhich were used for sequencegenera-

tionand A = ('f'x, '?'y, '?'z, IA?X, IA?y, IA?Z) arethe estimated motion parameters. In order to examinethe probability

of convergency, it isassumed, that the range of convergency isreached if thevaluesof | my || and || mg | are
smaller than thethresholds th; = 0.5pel and thgy = 0.5grad respectively. Experimental results show that the
probability of convergency is0.8076 by the proposed algorithm (algorithm 1) and 0.1057 by the algorithm
described in [4] (algorithm 2).

To evaluate the accuracy the estimation error variance ope2 for each estimate is used. Experimental resultsfor
each parameter are shown in the table 3.1. The average of the estimation error variance of the trandation
parameters GpeTz was found to be 2.7694 pel 2 by the algorithm 1 and 25.8495 pel? by the algorithm 2. The
average of the estimation error variance of therotation parameters GpeRz wasfound to be 0.8416 grad? by the
algorithm 1 and 3.7033 grad? by the algorithm 2. To evaluate the improvement of the accuracy by the motion
compensated K almanfilter only, thefilter can beswitched off. Then, G, >and 0, are3.2471 pel2and 1.045
grad? without Kalman filter respectively.

Since the criterion for estimating 3D—motion is based on the minimization of the mean square luminance
difference (M SE), animprovement of the probability of convergency and of theaccuracy can alsobeevaluated
comparing the M SE after motion compensation for each surface patch of the 3D—model object:

_ _ MSE1
G = — 10log MSE2 (3.3)
MSEL1 applies to the algorithm 1 and MSE2 to the algorithm 2. G represents the gain on M SE achieved by
increasing the probability of convergency and the accuracy by the algorithm 1. Experimentsusing thefirst two
images of the synthetic sequence show an average gain G of 10.2710 dB. Fig. 2 showsthe MSE1 and MSE2
for each triangle of the 208 of the 3D—model object.

4. Experimental results using a real image sequence

Results using the 1st and the 2nd images of thereal test sequence ” Claire” (CIF, 10Hz) show an average gain
G of 4.4734 dB on MSE as aresult of the improvement of the probability of convergency and the accuracy
by the algorithm 1. Here the 3D model object was automatically generated[3]. Fig 3 shows the MSE1 and
MSE2 for each of the 149 triangle of the 3D—model object.

5. Conclusions

In this contribution an algorithm for estimating 3D—motion of small surface patches of a 3D—object is
proposed. First experiments using a synthetically generated image sequence show that the probability of
convergency isgreater than 0.8076, an average of the estimation error variance for the translation parameters

GpeTz of 2.7694 pel 2 and an average of theestimation error variancefor therotation parameters GpeRz of 0.8416
grad?. Comparing this algorithm with the algorithm described in [4], using the sel ected neighborhood around
the surface patchincreasesthe probability of convergency from0.1057 to 0.8076, additionally improves GpeTz
from 25.8495 pel? to 3.2471 pel? and GpeRZ from 3.7033 grad? to 1.0451 grad?. Using the local luminance
error model together with the motion compensated Ka man filter improves GpeTz from 3.2471 pel?t0 2.7694

pel 2 and BpeRz from 1.0451 grad?to 0.8416 grad?. The average gain G on M SE after motion compensation

by increasing the probahility of convergency andtheaccuracy isfoundto be 10.2710dB using thesynthetically
generated image sequence and 4.4734 dB using the real image sequence " Claire” (CIF, 10Hz). In the future
work the proposed agorithm shall be investigated if it can be used for automatic modelling of flexibly



connected rigid 3D object components considering mutual occlusion for an object—based analysis—synthesis
coder (OBASC)[3].
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po pr)
mean of estimate | mean of estimate
the error the error

Truevalues | imate variance | estimate variance
(grad, pel) (grad?, pel?) (grad? pel?)

agorithm 1| algorithm 1| agorithm 2| algorithm 2
RO =001 go123 08745 | 04163 | 5.4063
R = 0.01| 00056 15620 | 04227 | 41001 >o
RE = 001| 00123 00884 | 00465 | 1.5836
TE =10 | o539 18072 | 09099 | 5.1500
TE =10 | 10485 13036 | 22862 | 6.4887
TO = 001| qmn 51075 | 162321 | 65.9008

Table 3.1 Mean of the estimates and the estimate error
variances by the proposed algorithm (algorithm 1) and Surface patch s
the algorithm described in [4] (algorithm 2) using the first
two images of the synthetically generated sequence.
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Fig. 2 Mean square luminance error (MSE) after motion compensation for each surface patch (triangle) of the
3D—model object using thefirst twoimage of the syntheticimage sequence, applying for estimation of 3D—-motion
the proposed algorithm (MSEL) and the algorithm described in [4] (MSE2).
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Fig. 3 Mean square luminace error (MSE) after motion compensation for each surface patch (triangle) of the
3D—model object using thefirst two imagesof thereal image sequence” Claire” (CIF, 10Hz), applying for estimation
of 3D—motion the proposed algorithm (MSE1L) and the algorithm described in [4] (MSE2).



