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Abstract
A robust algorithm for estimating 3D–motion of small surface patches of a 3D–object is described. The
robustness is measured by the probability of convergency to correct parameters. The 3D motion is estimated
by a gradient method, which  uses  a local luminance error model, a motion compensated Kalman Filter and
a selected neighboring surface around the patch. This technique can be used for automatic modelling of
flexibly connected rigid 3D object components considering mutual occlusion.

1. Introduction
To model 3D scenes from 2D image sequences, a model–based image analysis describes each moving object
m by a model object with 3 sets of parameters defining its motion A(m) , shape M(m) , and color S(m). The
parameter sets depend on the type of motion model being applied.  In this contribution, the motion model of
rigid 3D objects is used [3]. According to this motion model, the motion parameters
A(m) � (T(m)
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z ) describe the motion of a rigid object in 3D space. T(m)
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z  the rotation. The shape of the 3D–model object is
described by a mesh of triangles which is put up by a set of vertices referred as control points. The color
parameters define the luminance and chrominance reflectance of the object surface and are taken from a real
image by projection of the corresponding part of the real image onto each visible triangle of the mesh.  Each
image of a sequence can be reconstructed from the parameters of the model object by projecting the color
parameters onto the image plane of the model camera.

In order to estimate the 3D motion parameters A(m) of an object a basic algorithm was developed in [4].
However, due to the small surface of a surface patch, the probability of convergency to correct parameters will
be low.  For increasing the probability of convergency the number of the motion parameters to be estimated
was reduced in [1]. However, this has the disadvantage that only three parameters (T(m)

x , T(m)
y , R(m)

z ) can be
calculated.

This contribution presents an algorithm for estimating the 6 motion parameters of a small surface patch of a
3D–object based on a gradient method which tries to achieve a higher probability of convergency and accuracy
than the algorithm described in [4]. In order to improve the probability of convergency the proposed technique
uses a selected neighborhood around the surface patch and  for improving the accuracy, it applies a local
luminance error model and a motion compensated Kalman filter.

In section 2, the proposed 3D motion estimation algorithm is described. In section 3 and 4, first results on a
synthetically generated image sequence and a real image sequence respectively are discussed.

2. The 3D motion estimation algorithm

Fig. 1 shows a rigid model object with a surface patch s of which the 3D–motion shall be estimated. The 3D
motion is described by the parameters A(s) � (T(s)
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z ) defining translation and rotation.

The surface patch s represents a surface of a 3D model object and consists of N control points
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  and q triangles. An arbitrary point P(i) on the surface of s is moved to its new position
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  and the rotation matrix[R(s)
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] which is defined by the rotation angles
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z , around x–, y– and z–axes with the rotation center C(s).

To estimate the 3D motion of a surface patch it is assumed that differences between two successive images
sk and sk+1 are due to object motion only and that the shape of the object is known. For simplification, it is
assumed that only one triangle builds a surface patch s. In order to estimate 3D–motion the proposed algorithm
minimizes the mean square luminance difference between a projection of the triangle’s luminance component
onto the image plane of a model camera and the corresponding luminance of the current image sk+1. For that
purpose a gradient method is applied. It uses one set of observation points from each triangle. Each observation
point O(j)
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z )T, its luminance value I(j)   and its spatial linear gradient g(j) � (g(j)
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y )T.  The luminan-
ce and gradient are taken from the same image of which the color parameters of the 3D model object were
derived. The measure for selecting observation points is a high spatial gradient. For each observation point,
the luminance difference �I  between image sk and sk+1 is related to motion by the following linearized
equation:
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with the focal length of the camera F, the unknown motion parameters A(s) � (T(s)
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and the observation  point Ok � (Pk, g, I)  at position Pk � (Px, Py, Pz)T.

The expression (2.2) can be written as:

�I � [H] � A(s)T (2.3)

Using at least 6 observation points, we have a linear system of equations that can be solved by an iterative
Newton method for least square error[3][4]. Here, in order to improve the accuracy of the estimates a motion
compensated Kalman filter[2] using a local luminance error model is applied. In a motion compensated
Kalman filter, a 3D motion estimation of the triangle is carried out before the Kalman filter is applied. This
is achieved by solving the set of equations by an iterative Newton method for least square error. Then, to
improve the accuracy of those estimates, a Kalman filter is applied using a local luminance error model Iem
for each observation point O � (P, g, I). Equation (2.3) is extended for the Kalman Filter to the following
equation:

�I � [H] � A(s)T � Ie (2.4)

Ie is the luminance error which is modelled by the luminance error model Iem. Only those observation points
are used  by the Kalman Filter where the local luminance error model  was found to be valid. The luminance
error model considers for each observation point both, the luminance error due to the shape error of the
3D–model object �P and the luminance error due to camera noise. The shape error and the camera noise are
statistically independent. As a first approach,  the shape error �P is modelled by a Gaussian stationary random
process describing the shape error of each observation point  in the x, y and z directions. These errors are
assumed to be uncorrelated, with mean 0 and the same variance �M

2. In order to compute the luminance error
due to the shape error �P, only its projection �pg in the direction of the luminance gradient on the image plane
is considered[7]. Therefore, the shape error �P is mapped to a vector �p onto the image plane by a linear
transformation of the model camera. Then, the vector �p is projected onto the unit luminance gradient vector
gT�|g|  for getting �pg. The resulting  luminance error variance �Mg

2 can be written as:
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The camera noise is supposed to be a Gaussian uncorrelated zero–mean noise with variance �n
2. Finally, the

luminance error Ie is modelled by a Gaussian stationary random process with mean 0 and variance
�lem

2 � �Mg
2 � �n

2.

In order to improve the probability of convergency and consequently the robustness of the algorithm, the
number of observation points to be used for the estimation is increased. For that purpose, both the triangle and
its neighboring triangles are taken into account for 3D–motion estimation. However, increasing the number
of considered observation points improves the robustness of this algorithm only if the observation points of
the neighboring triangles and the observation points of the triangle itself follow the same motion, i.e. belong
to the same object.  In order to minimize the probability that neighboring triangles from different objects are
chosen, for each triangle the neighboring triangles are selected by a 2D segmentation. The regions found by
the 2D segmentation represent approximately the silhouettes of the objects in the image. Then, in order to
estimate the 3D motion parameters of a triangle, a neighboring triangle will be used only if both triangles
belong to the same region found by the 2D segmentation.  In this contribution, the 2D segmentation is based
on a segmentation of the displacement vector field inside of the silhouette of the 3D model object. The
displacement vector field is calculated by hierarchical block matching[6] using the current image sk�1 and



the previous image sk. To obtain the segmentation a multithresholding technique[5] is applied. Finally, the
obtained segmentation is improved by local analysis of the contours near the boundary of the different regions
which were found.

3. Experimental results using a synthetically generated image sequence

To examine the probability of convergency and the accuracy, a synthetically generated image sequence is used.
Each frame of this sequence was generated moving a 3D–model object one pixel in both x and y directions
and projecting its color parameters onto the image plane of a model camera.

To evaluate the probability of convergency, the maximal norm of the error of the estimated translation
parameters 	 mT 	 and the maximal norm of the error of the estimated rotation parameters 	 mR 	 are used:
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of convergency, it is assumed, that the range of convergency is reached if the values of 	 mT 	  and 	 mR 	 are
smaller than the thresholds thT � 0.5pel and thR � 0.5grad respectively. Experimental results show that the
probability of convergency is 0.8076 by the proposed algorithm (algorithm 1) and  0.1057 by the algorithm
described in [4] (algorithm 2).

To evaluate the accuracy the estimation error variance �pe
2 for each estimate is used. Experimental results for

each parameter are shown in the table 3.1. The average of the estimation error variance  of the translation
parameters �peT

2 was found to be 2.7694 pel2 by the algorithm 1 and 25.8495 pel2 by the algorithm 2. The

average of the estimation error variance  of the rotation parameters �peR
2 was found to be 0.8416 grad2 by the

algorithm 1 and 3.7033 grad2 by the algorithm 2. To evaluate the improvement of the accuracy by the motion
compensated Kalman filter only, the filter can be switched off. Then, �peT

2 and �peR
2 are 3.2471 pel2 and 1.045

grad2  without Kalman filter respectively.

Since the criterion for estimating 3D–motion is based on the minimization of the mean square luminance
difference (MSE), an improvement of the probability of convergency and of the accuracy can also be evaluated
comparing the MSE after motion compensation for each surface patch of the 3D–model object:

G � � 10 log MSE1
MSE2

(3.3)

MSE1 applies to the algorithm 1 and MSE2 to the algorithm 2. G represents the gain on MSE achieved by
increasing the probability of convergency and the accuracy by the algorithm 1. Experiments using the first two
images of the synthetic sequence show an average gain G of 10.2710 dB. Fig. 2 shows the MSE1 and MSE2
for each triangle of the 208 of the 3D–model object.

4. Experimental results using a real image sequence

Results using the 1st and the 2nd images of the real test sequence ”Claire” (CIF, 10Hz) show an average gain
G of 4.4734 dB on MSE as a result of the improvement of the probability of convergency and the accuracy
by the algorithm 1. Here the 3D model object was automatically generated[3]. Fig 3 shows the MSE1 and
MSE2 for each of the 149 triangle of the 3D–model object.

5. Conclusions

In this contribution an algorithm for estimating 3D–motion of small surface patches of a 3D–object is
proposed. First experiments using a synthetically generated image sequence show that the probability of
convergency is greater than 0.8076, an average of the estimation error variance for the translation parameters
�peT

2 of 2.7694 pel2 and an average of the estimation error variance for the rotation parameters �peR
2 of 0.8416

grad2. Comparing this algorithm with the algorithm described in [4], using the selected neighborhood around
the surface patch increases the  probability of convergency from 0.1057 to 0.8076, additionally improves �peT

2

from 25.8495 pel2 to 3.2471 pel2 and �peR
2 from 3.7033 grad2 to 1.0451 grad2. Using the local luminance

error model together with the motion compensated Kalman filter improves �peT
2 from 3.2471 pel2 to 2.7694

pel2 and �peR
2 from 1.0451   grad2 to 0.8416 grad2. The average gain G on MSE after motion compensation

by increasing the probability of convergency and the accuracy is found to be 10.2710 dB using the synthetically
generated image sequence and  4.4734 dB using the real image sequence ”Claire” (CIF, 10Hz). In the future
work the proposed algorithm shall be investigated if it can be used for automatic modelling of flexibly



connected rigid 3D object components considering mutual occlusion for an object–based analysis–synthesis
coder (OBASC)[3].
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Table 3.1 Mean of the estimates and the estimate error
variances by the proposed algorithm (algorithm 1) and
the algorithm described in [4] (algorithm 2) using the first
two images of the synthetically generated sequence.
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Fig. 2  Mean square luminance error (MSE) after motion compensation for each surface patch (triangle) of the
3D–model object using the first two image of the synthetic image sequence, applying for estimation of 3D–motion
the proposed algorithm (MSE1) and the algorithm described in [4] (MSE2).

Fig. 3  Mean square luminace error (MSE) after motion compensation for each surface patch (triangle) of the
3D–model object using the first two images of the real image sequence ”Claire” (CIF, 10Hz), applying for estimation
of 3D–motion the proposed algorithm (MSE1) and the algorithm described in [4] (MSE2).
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