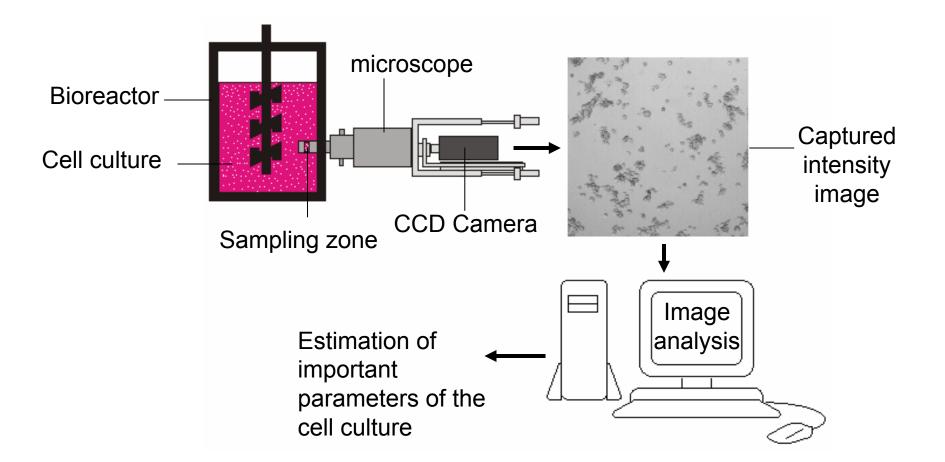
Region and Contour Based Cell Cluster Segmentation Algorithm for In-Situ Microscopy

A. Sheehy¹, G. Martinez¹, J.-G. Frerichs², T. Scheper²

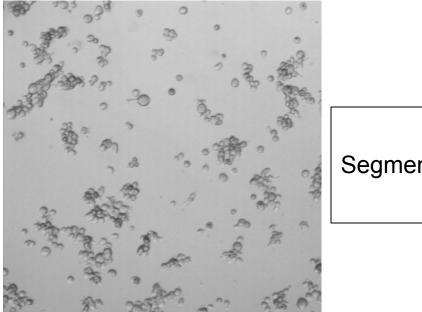
¹Image Processing and Computer Vision Research Laboratory (IPCV-LAB), Universidad de Costa Rica

²Institute of Technical Chemistry (TCI), Leibniz Universität Hannover

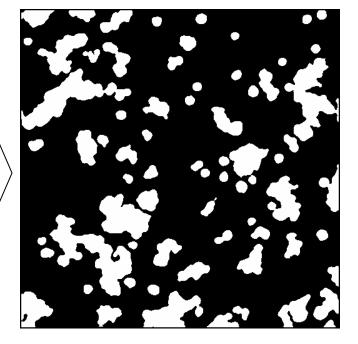

IEEE CCE, Mexico City, Mexico, November 2008

Topics

- Introduction
- Existing algorithms
- Proposed algorithm
- Experimental results
- Summary and conclusions


Introduction

In-situ microscopy

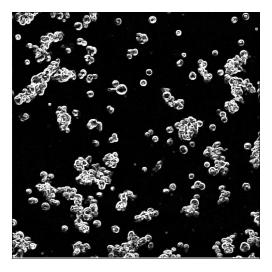

Introduction

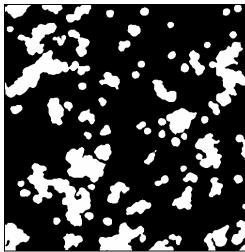
Cell image segmentation

Intensity image *I*(*x*,*y*), *x*:1..*L*, y:1..M, captured by the insitu microscope

Segmentation

Binary image $I_B(x,y)$, x:1..L, *y:1..M,* with pixels belonging to the cell clusters in white and pixels belonging to the background in black


Existing Algorithms


Cell cluster segmentation algorithms can be roughly divided into 4 main groups:

- Thresholding based segmentation algorithms
 Espinoza's algorithm: Latest contribution for
 segmenting BHK cells images captured by an
 in-situ microscope
- Contour based segmentation algorithms
- Region based segmentation algorithms
- Combinations of the previous

Espinoza's Algorithm

1) Global thresholding of the local variance

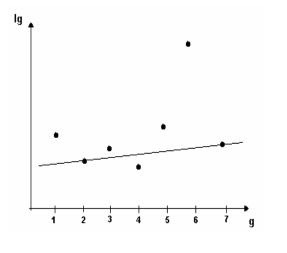
a. Estimate the local variance $\sigma^2(x,y)$ at each image position (*x*,*y*) using a 3x3 window:

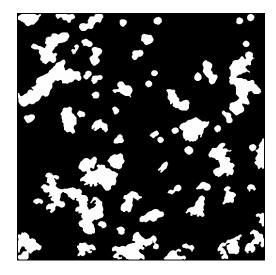
$$\sigma^{2}(x, y) \cong \frac{1}{50} \cdot \sum_{m=-3}^{3} \sum_{n=-3}^{3} \left[I(x+m, y+n) - m(x, y) \right]^{2}$$

with:

$$m(x, y) \cong \frac{1}{49} \cdot \sum_{m=-3}^{3} \sum_{n=-3}^{3} I(x+m, y+n)$$

b. Globally threshold the local variance:


$$I_B(x, y) = \begin{cases} 0, if \ \sigma^2(x, y) \le th_g \\ 1, if \ \sigma^2(x, y) > th_g \end{cases}$$


th_g is estimated applying a maximum likelihood algorithm (Kittler & Illingworth)

c. Apply a 5x5 median filter to I_B and eliminate small regions (<0.5%)

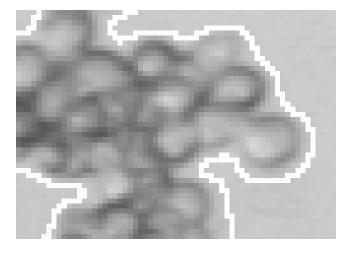
Espinoza's Algorithm

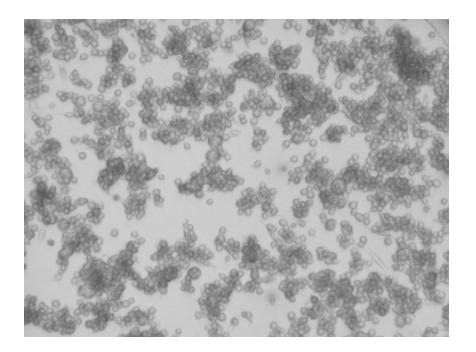
2) Local thresholding of the intensity

- **a.** Find for each segmented region *r* all the border pixels $I_g^{(r)}$, g:0...G^(r).
- **b.** Select from all the border pixels $I_g^{(r)}$ only those border pixels $I_h^{(r)}$, *j*:0... $H^{(r)}$ that have an intensity value similar to the background intensity value by applying a RANSAC algorithm
- **c.** Locally threshold the intensity in each region *r* :

$$I_{B}(x, y) = \begin{cases} 1, if I(x, y) \le th^{(r)} \\ 0, if I(x, y) > th^{(r)} \end{cases}, \ \forall \ (x, y) \in r \\ \text{with:} \qquad th_{l}^{(r)} = \frac{1}{H^{(r)}} \sum_{h=1}^{H^{(r)}} I_{h}^{(r)} \end{cases}$$

d. Apply a 5x5 median filter to I_B and eliminate small regions (<0.5%)


Espinoza's Algorithm


Problems

Low reliability in low contrast images:

Low precision:

Because:

- 1. The background is homogeneous
- 2. The cell clusters are non homogeneous with darker intensity values and well defined contours

we propose:

To segment the background using a region and contour based approach and then to invert the resulting binary image to get the cell cluster regions

- 1) Seed selection
- **a.** Select as background seed candidates those pixles that meet the following rules:

$$I(x, y) > m_2 - \sigma_2$$

$$\sigma^2(x,y) < 0.20 \cdot \sigma_2^2$$

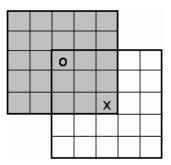
where, m_2 and σ_2 are the mean and standard deviation of the pixels' intensity values in the background

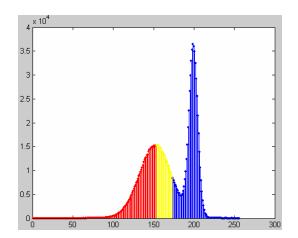
 m_2 and σ_2 , as well as the mean m_1 and standard deviation σ_1 of the pixels' intensity values in the cell clusters are estimated modeling the probability density function of the intensity values p(l) as a sum of two weighted Gaussian density functions:

$$c_{1} = \sum_{I=0}^{k} \frac{h(I)}{N} \qquad m_{1} = \frac{1}{c_{1}(k)} \cdot \sum_{I=0}^{k} I \cdot \frac{h(I)}{N} \qquad \sigma_{1}^{2} = \frac{1}{c_{1}(k)} \cdot \sum_{I=0}^{k} (I - m_{1})^{2} \cdot \frac{h(I)}{N}$$

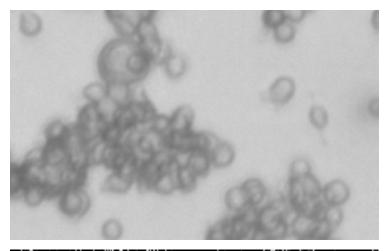
$$c_{2} = \sum_{I=k+1}^{255} \frac{h(I)}{N} \qquad m_{2} = \frac{1}{c_{2}(k)} \cdot \sum_{I=k+1}^{255} I \cdot \frac{h(I)}{N} \qquad \sigma_{2}^{2} = \frac{1}{c_{2}(k)} \cdot \sum_{I=k+1}^{255} (I - m_{2})^{2} \cdot \frac{h(I)}{N}$$

where *N* is the total number of pixels, h(I) is the number of pixels with intensity *I* and *k* is selected maximizing the following likelihood function:


$$L_{1}(k) = N \cdot \sum_{j=1}^{2} c_{j}(k) \cdot \log(c_{j}(k)) - \frac{N}{2} \cdot \log(2\pi) - \frac{N}{2} \cdot \sum_{j=1}^{2} c_{j}(k) \cdot \log(\sigma_{j}^{2}(k)) - \frac{N}{2}$$

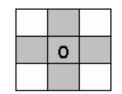

 b. Reject those seed candidates that meet at least one of the following rules:

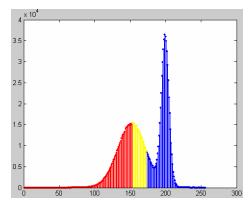
-One of its neighbors is a contour pixel

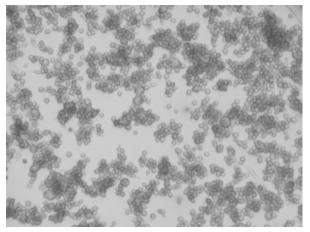

-One of its neighbors has $I(x, y) < m_1$ and also has a neighboring contour pixel

-One of its neighbors has $m_1 < I(x, y) < m_1 + \sigma_1$, $\sigma^2(x, y) > \sigma_2^2$ and a neighboring contour pixel

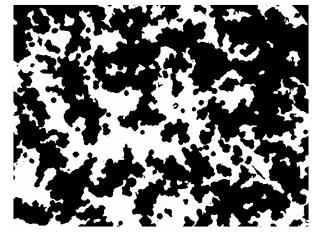
The contours in the image are obtained with the SUSAN algorithm:


The intensity values inside a circular mask are compared with the intensity value in the center (nucleus). If there is a low amount of pixels inside the mask with an intensity value similar to the intensity value of the nucleus, then the nucleus is a contour pixel.

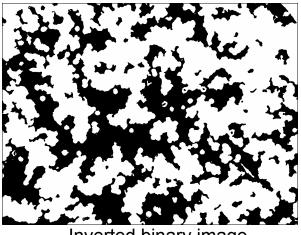

nucleus


mask

dark region


- 2) Region growing
 - **a.** Add a pixel to a seed unless it meets at least one of the follwing rules:
 - -It is a contour pixel.
 - -It has $I(x, y) < m_1$ and a neighboring contour pixel.
 - -It has $m_1 < I(x, y) < m_1 + \sigma_1$, $\sigma^2(x, y) > \sigma_2^2$ and a neighboring contour pixel
 - **b.** Repeat step **a.** until no more pixels can be added to the background region

Intensity image



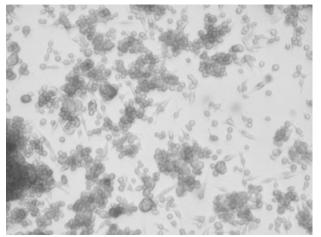
Binary image with segmented background

3) Invert the binary image

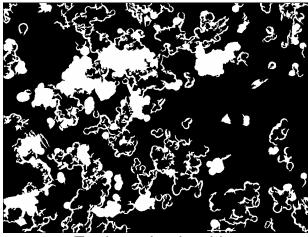
a. Invert the binary image with the segmented background.

Inverted binary image

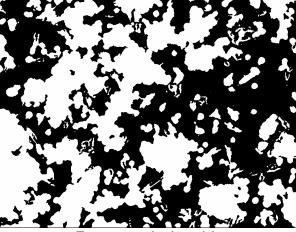
b. Apply a 5x5 median filter to the inverted binary image.


Experimetal Results

Reliability


Experiments in 30 different BHK cell images:

*BHK: Baby Hamster Kidney cells


Algorithm	# images with most cell clusters correctly segmented	Percentage of images with most cell clusters correctly segmented
Espinoza's algorithm	20	66%
Proposed algorithm	30	100%

Low contrast intensity image

Espinoza's algorithm segmentation result

Proposed algorithm segmentation result

Experimetal Results

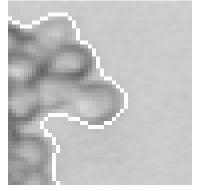
Precision

Distance from each boundary pixel *i*, *i*:1...n, of the automatically segmented regions to the closest boundary pixel of the manually segmented regions:

$$d_i^2 = (\Delta x_i)^2 + (\Delta y_i)^2$$

Mean square position error of the boundaries:

$$MSE = \frac{\sum_{i=1}^{n} d_i^2}{n}$$


Average MSE for Espinoza's algorithm	Average MSE for the proposed algorithm	Improvement
4,02 pixel ²	1,8 pixel ²	55,10%

Manual segmentation

Espinoza's algorithm segmentation result

Proposed algorithm segmentation result

Conclusions

The proposed segmentation algorithm is

- 33% more reliable
- 55% more accurate

than the Espinoza's algorithm in low contrast images

Thank you very much for your attention