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Overview

• Introduction
• Approach
• Algorithm
• Results
• Summary
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• One important feature of 
these planetary exploration
robots is their ability to 
navigate autonomosly

NASA JPL six-wheel 
rocker-bogie mobile 
robots for Mars surface 
exploration

Courtesy NASA/JPL-Caltech

Introduction
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• If you want a rover to 
navigate autonomously in 
a precise way, then the 
rover must know its 
position and orientation at 
any discrete time

Introduction
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Introduction

direction

ΔT

encoder output
P=7 ΔT 

• The rover´s position P is 
obtained by integrating its 
translation ΔT over time

• ΔT is estimated from 
encoder readings of how 
much the wheels turned 
(wheel odometry)
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Introduction

Courtesy NASA/JPL-Caltech

• Wheel odometry fails on 
slippery environments, 
such as sandy terrain, due 
to the loss of traction
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• This could cause the rover 
to deviate from its desired 
path

Introduction
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The problem is solved by 
detecting and compensating any 
slip that may occur

• Compute the robot 3D pose by 
minimizing the reprojection error at 
feature points

– a stereo camera used
– feature point correspondences required

• Knowing the rover 3D pose,  detect 
and compensate any slip that may 
occur

Introduction
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Sensor: instead of using a stereo 
camera, we propose to use a NIR 
ToF camera

– Monocular
– Faster depth signal calculation
– More accurate depth signal
– Easier to calibrate
– Works also at night
– Smaller
– Lower energy comsumption (?)

Approach

Stereo camera NIR ToF camera

✅☓
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Algorithm: instead of minimization the reprojection error 
at feature points, we propose the minimization of the 
photometric error at observation points

– no correspondences required
– faster

Two steps for getting the robot 3D pose:

(1) Frame to frame robot 3D motion estimation
(2) Integration of the estimated frame to frame robot 3D motion 

over time

Approach
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Basler 
640 20gm_850nm 
NIR ToF camera

Algorithm
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NIR video signal (VGA 15 fps) ToF depth signal (15 pcps)Basler 
640 20gm_850nm 
NIR ToF camera

Algorithm
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Frame to frame 
robot 3D motion 
    estimation

NIR video signal (VGA 15 fps) ToF depth signal (15 pcps)Basler 
640 20gm_850nm 
NIR ToF camera

Algorithm

Robot 3D motion
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Frame to frame 
robot 3D motion 
    estimation

NIR video signal (VGA 15 fps) ToF depth signal (15 pcps)Basler 
640 20gm_850nm 
NIR ToF camera

Minimizing photometric 
error at observation
points (iterative Maximim-
Likelihood estimator)

Algorithm

Robot 3D motion
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Frame to frame 
robot 3D motion 
    estimation

Composition rules

Robot 3D Pose

Robot 3D motion

NIR video signal (VGA 15 fps) ToF depth signal (15 pcps)Basler 
640 20gm_850nm 
NIR ToF camera

Minimizing photometric 
error at observation
points (iterative Maximim-
Likelihood estimator)

Σ

No 
correspondences 

required

Algorithm
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Frame to frame 
robot 3D motion 
    estimation

NIR video signal (VGA 15 fps) ToF depth signal (15 pcps)Basler 
640 20gm_850nm 
NIR ToF camera

Minimizing photometric 
error at observation
points (iterative Maximim-
Likelihood estimator)

No 
correspondences 

required

Algorithm

No inertial or wheel odometry aid used so far

Composition rules

Robot 3D Pose

Robot 3D motion

Σ



45

• Implemented in C 
– under Ubuntu/ROS

• Tested in real rover
– Seekur Jr.

• NIR ToF Camera
– 80 cm above the ground
– Looking to the left side of the 

rover tilted downwards 37°

• Ground truth
– Robotic total station

• 180 over rough terrain

Experimental Results

Experiment setup.
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• First set
– Straight paths
– 0.5, 1.0, 1.5 and 2.0 m
– 3 cm/s

• Mean of the absolute position 
error 
– 0.47% ±0.32% of the 

distance traveled

Experimental Results

• Second set
– rotation on its own axis
– 0.0° to 20.0°, 0.0° to 

45.0° and 0.0° to 60.0°
– 1.0°/s

• Mean of the absolute 
orientation error 
– 0.43% ±0.34% of the 

angle traveled
• Real time operation

– 50 ±7 fps
Intel Core i9-9980HK CPU @ 2.40GHz and 
8GB Memory under 64bit Ubuntu 14.04 LTS.
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Summary

• NIR ToF Odometry algorithm proposed

– Robot 3D pose computed by integrating frame-to-frame 
robot 3D motion over time

– Robot 3D motion estimated by minimizing photometric 
error at observation points

– No correspondences required

• Less 1% of the distance and angle traveled

• Real time operation

• Operation in the dark possible

• No inertial or wheel odometry aid used so far
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• Improve robustness

• Adapt to fast moving robots

• Extent to SLAM

• More experiments in the dark

Future work


